Recent interesting articles

From NanoWiki

(Difference between revisions)
Jump to: navigation, search
(Szept.19-30.)
(Szept.19-30.)
Line 23: Line 23:
----
----
----
----
 +
 +
== Nov. 16-21. ==
 +
''Scherübl Zoltán
 +
 +
Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation
 +
 +
'''Simon E. Nigg, Rakesh P. Tiwari, Stefan Walter, Thomas L. Schmidt'''
 +
 +
Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.
 +
 +
http://arxiv.org/abs/1411.3945
 +
 +
----
 +
 +
Current noise cross correlation mediated by Majorana bound states
 +
 +
'''Hai-Feng Lu, Hai-Zhou Lu, Shun-Qing Shen'''
 +
 +
We study the transport properties of a quantum dot-Majorana hybrid system, in which each of paired Majorana bound states is connected to one quantum dot. With the help of non-equilibrium Green's function method, we obtain an exact solution of the Green's functions and calculate the currents through the quantum dots and nonlocal noise cross correlation between the currents. As a function of dot energy levels ϵ1 and ϵ2, we find that for the symmetric level configuration ϵ1=ϵ2, the noise cross correlation is negative in the low lead voltage regime, while it becomes positive with the increase of the lead voltages. Due to the particle-hole symmetry, the cross correlation is always positive in the anti-symmetric case ϵ1=−ϵ2. In contrast, the cross correlation of non-Majorana setups is always positive. For comparison, we also perform the diagonalized master equation calculation to check its applicability. It is found that the diagonalized master equations work well in most regimes of system parameters. Nevertheless, it shows an obvious deviation from the exact solution by the non-equilibrium Green's function method when all eigenenergies of the dot-Majorana hybrid system and simultaneously the energy intervals are comparable to the dot-lead coupling strength.
 +
 +
http://arxiv.org/abs/1411.4260
 +
 +
----
 +
 +
Detecting bit-flip errors in a logical qubit using stabilizer measurements
 +
 +
'''D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, L. DiCarlo'''
 +
 +
Quantum data is susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction (QEC) to actively protect against both. In the smallest QEC codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Experimental demonstrations of QEC to date, using nuclear magnetic resonance, trapped ions, photons, superconducting qubits, and NV centers in diamond, have circumvented stabilizers at the cost of decoding at the end of a QEC cycle. This decoding leaves the quantum information vulnerable to physical qubit errors until re-encoding, violating a basic requirement for fault tolerance. Using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. We construct these stabilizers as parallelized indirect measurements using ancillary qubits, and evidence their non-demolition character by generating three-qubit entanglement from superposition states. We demonstrate stabilizer-based quantum error detection (QED) by subjecting a logical qubit to coherent and incoherent bit-flip errors on its constituent physical qubits. While increased physical qubit coherence times and shorter QED blocks are required to actively safeguard quantum information, this demonstration is a critical step toward larger codes based on multiple parity measurements.
 +
 +
http://arxiv.org/abs/1411.5542
== Szept.19-30.==
== Szept.19-30.==

Revision as of 13:46, 22 November 2014

Science this week issue

Nature last week

Nature Physics last week

Nature Nanotechnology last week

Nano Letters ASAP

ACS Nano ASAP

Cond-mat Mesoscale and Nanoscale Physics - recent papers Note: all the papers in a certain month can be listed as e.g. http://xxx.lanl.gov/list/cond-mat.mes-hall/1104 , where 11 stands for 2011 and 04 for April.

Physical Review Letters

Physical Review B

[1]

Link to the archive of this series before 2014



Contents

Nov. 16-21.

Scherübl Zoltán

Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

Simon E. Nigg, Rakesh P. Tiwari, Stefan Walter, Thomas L. Schmidt

Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

http://arxiv.org/abs/1411.3945


Current noise cross correlation mediated by Majorana bound states

Hai-Feng Lu, Hai-Zhou Lu, Shun-Qing Shen

We study the transport properties of a quantum dot-Majorana hybrid system, in which each of paired Majorana bound states is connected to one quantum dot. With the help of non-equilibrium Green's function method, we obtain an exact solution of the Green's functions and calculate the currents through the quantum dots and nonlocal noise cross correlation between the currents. As a function of dot energy levels ϵ1 and ϵ2, we find that for the symmetric level configuration ϵ1=ϵ2, the noise cross correlation is negative in the low lead voltage regime, while it becomes positive with the increase of the lead voltages. Due to the particle-hole symmetry, the cross correlation is always positive in the anti-symmetric case ϵ1=−ϵ2. In contrast, the cross correlation of non-Majorana setups is always positive. For comparison, we also perform the diagonalized master equation calculation to check its applicability. It is found that the diagonalized master equations work well in most regimes of system parameters. Nevertheless, it shows an obvious deviation from the exact solution by the non-equilibrium Green's function method when all eigenenergies of the dot-Majorana hybrid system and simultaneously the energy intervals are comparable to the dot-lead coupling strength.

http://arxiv.org/abs/1411.4260


Detecting bit-flip errors in a logical qubit using stabilizer measurements

D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, L. DiCarlo

Quantum data is susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction (QEC) to actively protect against both. In the smallest QEC codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Experimental demonstrations of QEC to date, using nuclear magnetic resonance, trapped ions, photons, superconducting qubits, and NV centers in diamond, have circumvented stabilizers at the cost of decoding at the end of a QEC cycle. This decoding leaves the quantum information vulnerable to physical qubit errors until re-encoding, violating a basic requirement for fault tolerance. Using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. We construct these stabilizers as parallelized indirect measurements using ancillary qubits, and evidence their non-demolition character by generating three-qubit entanglement from superposition states. We demonstrate stabilizer-based quantum error detection (QED) by subjecting a logical qubit to coherent and incoherent bit-flip errors on its constituent physical qubits. While increased physical qubit coherence times and shorter QED blocks are required to actively safeguard quantum information, this demonstration is a critical step toward larger codes based on multiple parity measurements.

http://arxiv.org/abs/1411.5542

Szept.19-30.

Márton Attila

Előadás: SNS junctions in nanowires with spin-orbit coupling: role of confinement and helicity on the sub-gap spectrum (http://arxiv.org/abs/1410.6074) pptx (pptx)

Photons made to dance together

Physicists have made two beams of light interact at the level of individual photons.

Getting photons to interact is important for all-optical computation and for producing new quantum states of light. Kristin Beck at the Massachusetts Institute of Technology in Cambridge and her colleagues crossed two beams of light inside a cavity filled with trapped and cooled caesium atoms. When photons from each beam tried to pass through the system at the same time, the trapped atoms changed their internal state, allowing only one photon to be transmitted, while the other one was reflected or scattered.

The interaction creates two entangled beams of light, which the authors say could eventually be used to improve the accuracy of measurements, such as of a gyroscope's rotation, that would otherwise be limited by the laws of quantum mechanics.

http://www.nature.com/nature/journal/v513/n7519/full/513463a.html


Quantum bits get their first compression

Without algorithms that compress data to encode information into fewer bits, hard drives would clog up and Internet traffic would slow to a snail's pace. Now, a group of physicists in Canada has shown for the first time that it is possible to compress the kind of data that might be used in the computers of tomorrow — known as quantum bits, or qubits.


http://www.nature.com/news/quantum-bits-get-their-first-compression-1.15961


Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer

S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T. Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A. D. Wieck, and S. Tarucha

We report on the direct observation of the transmission phase shift through a Kondo correlated quantum dot by employing a new type of two-path interferometer. We observed a clear π/2-phase shift, which persists up to the Kondo temperature TK. Above this temperature, the phase shifts by more than π/2 at each Coulomb peak, approaching the behavior observed for the standard Coulomb blockade regime. These observations are in remarkable agreement with two-level numerical renormalization group calculations. The unique combination of experimental and theoretical results presented here fully elucidates the phase evolution in the Kondo regime.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.126601


Entanglement Entropy in Fermi Gases and Anderson’s Orthogonality Catastrophe

A. Ossipov

We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite system of noninteracting fermions scattered by a potential of finite range a. We derive a general relation between the scattering matrix and the overlap matrix and use it to prove that for a one-dimensional symmetric potential the von Neumann entropy, the Rényi entropies, and the full counting statistics are robust against potential scattering, provided that L/a≫1. The results of numerical calculations support the validity of this conclusion for a generic potential.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.130402


Experimental realization of a Coulomb blockade refrigerator

A. V. Feshchenko, J. V. Koski, J. P. Pekola

We present an experimental realization of a Coulomb blockade refrigerator (CBR) based on a single - electron transistor (SET). In the present structure, the SET island is interrupted by a superconducting inclusion to permit charge transport while preventing heat flow. At certain values of the bias and gate voltages, the current through the SET cools one of the junctions. The measurements follow theoretical model down to about 80 mK, which was the base temperature of the current measurements. The observed cooling increases rapidly with decreasing temperature in agreement with the theory, reaching about 15 mK drop at the base temperature. CBR appears as a promising electronic cooler at temperatures well below 100 mK.

http://xxx.lanl.gov/abs/1409.5637


Klein-tunneling transistor with ballistic graphene

Quentin Wilmart, Salim Berada, David Torrin, V. Hung Nguyen, Gwendal Fève, Jean-Marc Berroir, Philippe Dollfus, Bernard Plaçais

Today the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistor in the ballistic regime gives access to the Klein tunneling physics and allows the realization of devices exploiting the optics-like behavior of Dirac Fermions (DF) as in the Vesalego lens or the Fabry P\'erot cavity. Here we propose a Klein tunneling transistor based on geometrical optics of DF. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of the transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using Non Equilibrium Green's Function(NEGF) simulation.

http://xxx.lanl.gov/abs/1409.6170


Directly accessible entangling gates for capacitively coupled singlet-triplet qubits

Fernando A. Calderon-Vargas, Jason P. Kestner

The recent experimental advances in capacitively coupled singlet-triplet qubits, particularly the demonstration of entanglement, opens the question of what type of entangling gates the system's Hamiltonian can produce directly via a single square pulse. We address this question by considering the system's Hamiltonian from first principles and using the representation of its nonlocal properties in terms of local invariants. In the analysis we include the three different ways in which the system can be biased and their effect on the generation of entangling gates. We find that, in one of the possible biasing modes, the Hamiltonian has an especially simple form, which can directly generate a wide range of different entangling gates including the iSWAP gate. Moreover, using the complete form of the Hamiltonian we find that, for any biasing mode, a CNOT gate can be generated directly.

http://xxx.lanl.gov/abs/1409.6292


Zeeman splitting spin filter in a single quantum dot electron transport with Coulomb blockade effect

Wenxi Lai

Electron spin filter induced by Zeeman splitting in a few-electron quantum dot coupled to two normal electrodes is studied considering Coulomb blockade effect. Based on the Anderson model and Liouville-von Neumann equation, equation of motion of the system is derived and analytical solutions are achieved. Transport windows for perfectly polarized current, partially polarized current and non-polarized current induced by the Zeeman splitting energy and Coulomb blockade potential are exploited. We will give the relations of voltage, magnetic field and temperature for high quality spin filtering.

http://xxx.lanl.gov/abs/1409.6389


Majorana bound states without topological superconductivity

Pablo San-Jose, Jorge Cayao, Elsa Prada, Ramón Aguado

Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is opened to a normal region. The emergence of Majorana states is a consequence of non-hermitian degeneracies of the resulting open quantum system, while arbitrarily large Majorana lifetimes follow from high junction transparency and helicity of the normal side. At these degeneracies, also known as `exceptional points', both the eigenvalues and the eigenstates coalesce, and acquire Majorana properties (zero-energy, self-conjugation, 4π-periodic braiding...) despite the trivial band topology. Exceptional Majoranas are thus the open-system counterparts of conventional Majorana bound states, to which they are continuously connected, and exhibit all their phenomenology while not requiring topological superconductivity.

http://xxx.lanl.gov/abs/1409.7306


Majorana Fermions in Ge/Si Hole Nanowires

Franziska Maier, Jelena Klinovaja, Daniel Loss

We consider Ge/Si core/shell nanowires with hole states coupled to an s-wave superconductor in the presence of electric and magnetic fields. We employ a microscopic model that takes into account material-specific details of the band structure such as strong and electrically tunable Rashba-type spin-orbit interaction and g factor anisotropy for the holes. In addition, the proximity-induced superconductivity Hamiltonian is derived starting from a microscopic model. In the topological phase, the nanowires host Majorana fermions with localization lengths that depend strongly on both the magnetic and electric fields. We identify the optimal regime in terms of the directions and magnitudes of the fields in which the Majorana fermions are the most localized at the nanowire ends. In short nanowires, the Majorana fermions hybridize and form a subgap fermion whose energy is split away from zero and oscillates as a function of the applied fields. The period of these oscillations could be used to measure the dependence of the spin-orbit interaction on the applied electric field and the g factor anisotropy.

http://xxx.lanl.gov/abs/1409.8645

Szept.13-19.

Tóvári Endre

Crossover from Josephson Effect to Single Interface Andreev Reflection in Asymmetric Superconductor/Nanowire Junctions

'H. Y. Günel, N. Borgwardt, I. E. Batov, H. Hardtdegen, K. Sladek, G. Panaitov, D. Grützmacher, and Th. Schäpers'

We report on the fabrication and characterization of symmetric nanowire-based Josephson junctions, that is, Al- and Nb-based junctions, and asymmetric junctions employing superconducting Al and Nb. In the symmetric junctions, a clear and pronounced Josephson supercurrent is observed. These samples also show clear signatures of subharmonic gap structures. At zero magnetic field, a Josephson coupling is found for the asymmetric Al/InAs-nanowire/Nb junctions as well. By applying a magnetic field above the critical field of Al or by raising the temperature above the critical temperature of Al the junction can be switched to an effective single-interface superconductor/nanowire structure. In this regime, a pronounced zero-bias conductance peak due to reflectionless tunneling has been observed.

http://pubs.acs.org/doi/abs/10.1021/nl501350v


Robust Electron Pairing in the Integer Quantum Hall Effect Regime

'Hyungkook Choi, Itamar Sivan, Amir Rosenblatt, Moty Heiblum, Vladimir Umansky, Diana Mahalu'

Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron "pairing" in the integer quantum Hall effect (IQHE) regime. The pairing takes place within an interfering edge channel circulating in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, 2<νB<5. The main observations are: (a) High visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity Δϕ=φ0/2=h/2e (instead of the ubiquitous h/e), with e the electron charge and h the Planck constant; (b) An interfering quasiparticle charge e∗∼2e - revealed by quantum shot noise measurements; and (c) Full dephasing of the h/2e periodicity by induced dephasing of the adjacent edge channel (while keeping the interfering edge channel intact) : a clear realization of inter-channel entanglement. While this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to e-e attraction within a single edge channel is not clear.

http://xxx.lanl.gov/abs/1409.4427


Robust 2D Topological Insulators in van der Waals Heterostructures

'Liangzhi Kou, Shu-Chun Wu, Claudia Felser, Thomas Frauenheim, Changfeng Chen, and Binghai Yan'

We predict a family of robust two-dimensional (2D) topological insulators in van der Waals heterostructures comprising graphene and chalcogenides BiTeX (X = Cl, Br, and I). The layered structures of both constituent materials produce a naturally smooth interface that is conducive to proximity-induced topological states. First-principles calculations reveal intrinsic topologically nontrivial bulk energy gaps as large as 70–80 meV, which can be further enhanced up to 120 meV by compression. The strong spin–orbit coupling in BiTeX has a significant influence on the graphene Dirac states, resulting in the topologically nontrivial band structure, which is confirmed by calculated nontrivial Z2 index and an explicit demonstration of metallic edge states. Such heterostructures offer a unique Dirac transport system that combines the 2D Dirac states from graphene and 1D Dirac edge states from the topological insulator, and it offers ideas for innovative device designs.

http://pubs.acs.org/doi/abs/10.1021/nn503789v


Pseudospin-driven spin relaxation mechanism in graphene

'Dinh Van Tuan, Frank Ortmann, David Soriano, Sergio O. Valenzuela & Stephan Roche'

The prospect of transporting spin information over long distances in graphene, possible because of its small intrinsic spin–orbit coupling (SOC) and vanishing hyperfine interaction, has stimulated intense research exploring spintronics applications. However, measured spin relaxation times are orders of magnitude smaller than initially predicted, while the main physical process for spin dephasing and its charge-density and disorder dependences remain unconvincingly described by conventional mechanisms. Here, we unravel a spin relaxation mechanism for non-magnetic samples that follows from an entanglement between spin and pseudospin driven by random SOC, unique to graphene. The mixing between spin and pseudospin-related Berry’s phases results in fast spin dephasing even when approaching the ballistic limit, with increasing relaxation times away from the Dirac point, as observed experimentally. The SOC can be caused by adatoms, ripples or even the substrate, suggesting novel spin manipulation strategies based on the pseudospin degree of freedom.

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3083.html


Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

'Yang Xu, Ireneusz Miotkowski, Chang Liu, Jifa Tian, Hyoungdo Nam, Nasser Alidoust, Jiuning Hu, Chih-Kang Shih, M. Zahid Hasan, Yong P. Chen'

A three-dimensional (3D) topological insulator (TI) is a quantum state of matter with a gapped insulating bulk yet a conducting surface hosting topologically-protected gapless surface states. One of the most distinct electronic transport signatures predicted for such topological surface states (TSS) is a well-defined half-integer quantum Hall effect (QHE) in a magnetic field, where the surface Hall conductivities become quantized in units of (1/2)e2/h (e being the electron charge, h the Planck constant) concomitant with vanishing resistance. Here, we observe well-developed QHE arising from TSS in an intrinsic TI of BiSbTeSe2. Our samples exhibit surface dominated conduction even close to room temperature, while the bulk conduction is negligible. At low temperatures and high magnetic fields perpendicular to the top and bottom surfaces, we observe well-developed integer quantized Hall plateaus, where the two parallel surfaces each contributing a half integer e2/h quantized Hall (QH) conductance, accompanied by vanishing longitudinal resistance. When the bottom surface is gated to match the top surface in carrier density, only odd integer QH plateaus are observed, representing a half-integer QHE of two degenerate Dirac gases. This system provides an excellent platform to pursue a plethora of exotic physics and novel device applications predicted for TIs, ranging from magnetic monopoles and Majorana particles to dissipationless electronics and fault-tolerant quantum computers.

http://xxx.lanl.gov/abs/1409.3778


MoS2: a Choice Substrate for Accessing and Tuning the Electronic Properties of Graphene

'Chih-Pin Lu, Guohong Li, K. Watanabe, T. Taniguchi, Eva Y. Andrei'

One of the enduring challenges in graphene research and applications is the extreme sensitivity of its charge carriers to external perturbations, especially those introduced by the substrate. The best available substrates to date, graphite and hBN, still pose limitations: graphite being metallic does not allow gating, while both hBN and graphite having lattice structures closely matched to that of graphene, may cause significant band structure reconstruction. Here we show that the atomically smooth surface of exfoliated MoS2 provides access to the intrinsic electronic structure of graphene without these drawbacks. Using scanning tunneling microscopy and Landau-level spectroscopy in a device configuration which allows tuning the carrier concentration, we find that graphene on MoS2 is ultra-flat producing long mean free paths, while avoiding band structure reconstruction. Importantly, the screening of the MoS2 substrate can be tuned by changing the position of the Fermi energy with relatively low gate voltages. We show that shifting the Fermi energy from the gap to the edge of the conduction band gives rise to enhanced screening and to a substantial increase in the mean-free-path and quasiparticle lifetime. MoS2 substrates thus provide unique opportunities to access the intrinsic electronic properties of graphene and to study in situ the effects of screening on electron-electron interactions and transport.

http://xxx.lanl.gov/abs/1409.5179


Aharonov-Bohm Oscillations in a Quasi-Ballistic 3D Topological Insulator Nanowire

'S. Cho, B. Dellabetta, R. D. Zhong, J. Schneeloch, T. S. Liu, G. Gu, Matthew J. Gilbert, Nadya Mason'

In three-dimensional topological insulators (3D TI) nanowires, transport occurs via gapless surface states where the spin is fixed perpendicular to the momentum[1-6]. Carriers encircling the surface thus acquire a \pi Berry phase, which is predicted to open up a gap in the lowest-energy 1D surface subband. Inserting a magnetic flux ({\Phi}) of h/2e through the nanowire should cancel the Berry phase and restore the gapless 1D mode[7-8]. However, this signature has been missing in transport experiments reported to date[9-11]. Here, we report measurements of mechanically-exfoliated 3D TI nanowires which exhibit Aharonov-Bohm oscillations consistent with topological surface transport. The use of low-doped, quasi-ballistic devices allows us to observe a minimum conductance at {\Phi} = 0 and a maximum conductance reaching e^2/h at {\Phi} = h/2e near the lowest subband (i.e. the Dirac point), as well as the carrier density dependence of the transport.

http://xxx.lanl.gov/abs/1409.5095


Experimental Realization of a Three-Dimensional Dirac Semimetal

'Sergey Borisenko, Quinn Gibson, Danil Evtushinsky, Volodymyr Zabolotnyy, Bernd Büchner, and Robert J. Cava'

We report the direct observation of the three-dimensional (3D) Dirac semimetal phase in cadmium arsenide (Cd3As2) by means of angle-resolved photoemission spectroscopy. We identify two momentum regions where electronic states that strongly disperse in all directions form narrow conelike structures, and thus prove the existence of the long sought 3D Dirac points. This electronic structure naturally explains why Cd3As2 has one of the highest known bulk electron mobilities. This realization of a 3D Dirac semimetal in Cd3As2 not only opens a direct path to a wide spectrum of applications, but also offers a robust platform for engineering topologically nontrivial phases including Weyl semimetals and quantum spin Hall systems.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.027603


Terahertz Generation by Dynamical Photon Drag Effect in Graphene Excited by Femtosecond Optical Pulses

'J. Maysonnave, S. Huppert, F. Wang, S. Maero, C. Berger, W. de Heer, T. B. Norris, L. A. De Vaulchier, S. Dhillon, J. Tignon, R. Ferreira, and J. Mangeney'

Graphene has been proposed as a particularly attractive material for the achievement of strong optical nonlinearities, in particular generation of terahertz radiation. However, owing to the particular symmetries of the C-lattice, second-order nonlinear effects such as difference-frequency or rectification processes are predicted to vanish in a graphene layer for optical excitations (ℏω ≫ 2EF) involving the two relativistic dispersion bands. Here we experimentally demonstrate that graphene excited by femtosecond optical pulses generate a coherent THz radiation ranging from 0.1 to 4 THz via a second-order nonlinear effect. We fully interpret its characteristics with a model describing the electron and hole states beyond the usual massless relativistic scheme. This second-order nonlinear effect is dynamical photon drag, which relies on the transfer of light momentum to the carriers by the ponderomotive electric and magnetic forces. The model highlights the key roles of next-C-neighbor couplings and of unequal electron and hole lifetimes in the observed second-order response. Finally, our results indicate that dynamical photon drag effect in graphene can provide emission up to 60 THz, opening new routes for the generation of ultrabroadband terahertz pulses.

http://pubs.acs.org/doi/abs/10.1021/nl502684j


Exceptional Charge Transport Properties of Graphene on Germanium

'Francesca Cavallo, Richard Rojas Delgado, Michelle M. Kelly, José R. Sánchez Pérez, Daniel P. Schroeder, Huili Grace Xing, Mark A. Eriksson, and Max G. Lagally'

The excellent charge transport properties of graphene suggest a wide range of application in analog electronics. While most practical devices will require that graphene be bonded to a substrate, such bonding generally degrades these transport properties. In contrast, when graphene is transferred to Ge(001) its conductivity is extremely high and the charge carrier mobility derived from the relevant transport measurements is, under some circumstances, higher than that of freestanding, edge-supported graphene. We measure a mobility of ∼5 × 105 cm2 V–1 s–1 at 20 K, and ∼103 cm2 V–1 s–1 at 300 K. These values are close to the theoretical limit for doped graphene. Carrier densities in the graphene are as high as 1014 cm–2 at 300 K.

http://pubs.acs.org/doi/abs/10.1021/nn503381m


Direct Laser Writing of Graphene Electronics

http://pubs.acs.org/doi/abs/10.1021/nn504946k


Room-temperature coupling between electrical current and nuclear spins in OLEDs

'H. Malissa, M. Kavand, D. P. Waters, K. J. van Schooten, P. L. Burn, Z. V. Vardeny, B. Saam, J. M. Lupton, C. Boehme'

The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

http://www.sciencemag.org/content/345/6203/1487


Large, non-saturating magnetoresistance in WTe2

'Mazhar N. Ali, Jun Xiong, Steven Flynn, Jing Tao, Quinn D. Gibson, Leslie M. Schoop, Tian Liang, Neel Haldolaarachchige, Max Hirschberger, N. P. Ong & R. J. Cava'

Magnetoresistance is the change in a material’s electrical resistance in response to an applied magnetic field. Materials with large magnetoresistance have found use as magnetic sensors1, in magnetic memory2, and in hard drives3 at room temperature, and their rarity has motivated many fundamental studies in materials physics at low temperatures4. Here we report the observation of an extremely large positive magnetoresistance at low temperatures in the non-magnetic layered transition-metal dichalcogenide WTe2: 452,700 per cent at 4.5 kelvins in a magnetic field of 14.7 teslas, and 13 million per cent at 0.53 kelvins in a magnetic field of 60 teslas. In contrast with other materials, there is no saturation of the magnetoresistance value even at very high applied fields. Determination of the origin and consequences of this effect, and the fabrication of thin films, nanostructures and devices based on the extremely large positive magnetoresistance of WTe2, will represent a significant new direction in the study of magnetoresistivity.

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13763.html


Fast non-thermal switching between macroscopic charge-ordered quantum states induced by charge injection

'I. Vaskivskyi, I. A. Mihailovic, S. Brazovskii, J. Gospodaric, T. Mertelj, D. Svetin, P. Sutar, D. Mihailovic'

The functionality of logic and memory elements in current electronics is based on multi-stability, driven either by manipulating local concentrations of electrons in transistors, or by switching between equivalent states of a material with a degener- ate ground state in magnetic or ferroelectric materials. Another possibility is offered by phase transitions with switching between metallic and insulating phases, but classical phase transitions are limited in speed by slow nucleation, proliferation of domains and hysteresis. We can in principle avoid these problems by using quantum states for switching, but microscopic systems suffer from decoherence which prohibits their use in everyday devices. Macroscopic quantum states, such as the superconducting ground state have the advantage that on a fundamental level they do not suffer from decoherence plaguing microscopic systems. Here we demonstrate for the first time ultrafast non-thermal switching between different metastable electronically ordered states by pulsed electrical charge injection. The macroscopic nature of the many-body quantum states(1-4) - which are not part of the equilibrium phase diagram - gives rise to unprecedented stability and remarka- bly sharp switching thresholds. Fast sub-50 ps switching, large associated re- sistance changes, 2-terminal operation and demonstrable high fidelity of bi-stability control suggest new opportunities for the use of macroscopic quantum states in electronics, particularly for an ultrafast non-volatile quantum charge-order resistive random access memory (QCOR-RAM).

http://xxx.lanl.gov/abs/1409.3794


Imaging the two-component nature of Dirac–Landau levels in the topological surface state of Bi2Se3

'Ying-Shuang Fu, M. Kawamura, K. Igarashi, H. Takagi, T. Hanaguri & T. Sasagawa'

Massless Dirac electrons in condensed matter1, 2, 3, 4, 5, 6 are, unlike conventional electrons, described by two-component wavefunctions associated with the spin degrees of freedom in the surface state of topological insulators5, 6. Hence, the ability to observe the two-component wavefunction is useful for exploring novel spin phenomena. Here we show that the two-component nature is manifest in Landau levels, the degeneracy of which is lifted by a Coulomb potential. Using spectroscopic-imaging scanning tunnelling microscopy, we visualize energy and spatial structures of Landau levels in Bi2Se3, a prototypical topological insulator. The observed Landau-level splitting and internal structures of Landau orbits are distinct from those in a conventional electron system7 and are well reproduced by a two-component model Dirac Hamiltonian. Our model further predicts energy-dependent spin-magnetization textures in a potential variation and provides a way for manipulating spins in the topological surface state.

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3084.html


Ultrafast non-local control of spontaneous emission

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.190.html


http://www.sciencedirect.com/science/article/pii/S0008622314007465

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.125428


For fun:

Spraying Quantum Dot Conjugates in the Colon of Live Animals Enabled Rapid and Multiplex Cancer Diagnosis Using Endoscopy

http://pubs.acs.org/doi/abs/10.1021/nn5009269


Szept.2-12.

Tóvári Endre

Fabry-Pérot Interference in Gapped Bilayer Graphene with Broken Anti-Klein Tunneling

'Anastasia Varlet, Ming-Hao Liu (劉明豪), Viktor Krueckl, Dominik Bischoff, Pauline Simonet, Kenji Watanabe, Takashi Taniguchi, Klaus Richter, Klaus Ensslin, and Thomas Ihn'

We report the experimental observation of Fabry-Pérot interference in the conductance of a gate-defined cavity in a dual-gated bilayer graphene device. The high quality of the bilayer graphene flake, combined with the device’s electrical robustness provided by the encapsulation between two hexagonal boron nitride layers, allows us to observe ballistic phase-coherent transport through a 1−μm-long cavity. We confirm the origin of the observed interference pattern by comparing to tight-binding calculations accounting for the gate-tunable band gap. The good agreement between experiment and theory, free of tuning parameters, further verifies that a gap opens in our device. The gap is shown to destroy the perfect reflection for electrons traversing the barrier with normal incidence (anti-Klein tunneling). The broken anti-Klein tunneling implies that the Berry phase, which is found to vary with the gate voltages, is always involved in the Fabry-Pérot oscillations regardless of the magnetic field, in sharp contrast with single-layer graphene.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.116601


Anomalous Sequence of Quantum Hall Liquids Revealing a Tunable Lifshitz Transition in Bilayer Graphene

'Anastasia Varlet, Dominik Bischoff, Pauline Simonet, Kenji Watanabe, Takashi Taniguchi, Thomas Ihn, Klaus Ensslin, Marcin Mucha-Kruczyński, and Vladimir I. Fal’ko'

Bilayer graphene is a unique system where both the Fermi energy and the low-energy electron dispersion can be tuned. This is brought about by an interplay between trigonal warping and the band gap opened by a transverse electric field. Here, we drive the Lifshitz transition in bilayer graphene to experimentally controllable carrier densities by applying a large transverse electric field to a h-BN-encapsulated bilayer graphene structure. We perform magnetotransport measurements and investigate the different degeneracies in the Landau level spectrum. At low magnetic fields, the observation of filling factors −3 and −6 quantum Hall states reflects the existence of three maxima at the top of the valence-band dispersion. At high magnetic fields, all integer quantum Hall states are observed, indicating that deeper in the valence band the constant energy contours are singly connected. The fact that we observe ferromagnetic quantum Hall states at odd-integer filling factors testifies to the high quality of our sample. This enables us to identify several phase transitions between correlated quantum Hall states at intermediate magnetic fields, in agreement with the calculated evolution of the Landau level spectrum. The observed evolution of the degeneracies, therefore, reveals the presence of a Lifshitz transition in our system.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.116602


Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate

'D. Bischoff, F. Libisch, J. Burgdörfer, T. Ihn, and K. Ensslin'

We present electronic transport measurements through short and narrow (30×30nm) single-layer graphene constrictions on a hexagonal boron nitride substrate. While the general observation of Coulomb blockade is compatible with earlier work, the details are not: We show that the area on which charge is localized can be significantly larger than the area of the constriction, suggesting that the localized states responsible for the Coulomb blockade leak out into the graphene bulk. The high bulk mobility of graphene on hexagonal boron nitride, however, seems to be inconsistent with the short bulk localization length required to see Coulomb blockade. To explain these findings, charge must instead be primarily localized along the imperfect edges of the devices and extend along the edge outside of the constriction. In order to better understand the mechanisms, we compare the experimental findings with tight-binding simulations of such constrictions with disordered edges. Finally, we discuss previous experiments in the light of our findings.

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.115405


Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures

'A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R. Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y-J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal'ko, A. K. Geim, L. Eaves & K. S. Novoselov'

Recent developments in the technology of van der Waals heterostructures1, 2 made from two-dimensional atomic crystals3, 4 have already led to the observation of new physical phenomena, such as the metal–insulator transition5 and Coulomb drag6, and to the realization of functional devices, such as tunnel diodes7, 8, tunnel transistors9, 10 and photovoltaic sensors11. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack12, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers13, 14, 15, 16, 17. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.187.html


Resistance-voltage dependence of nanojunctions during electromigration in ultrahigh vacuum

'D. Stöffler, M. Marz, B. Kießig, T. Tomanic, R. Schäfer, H. v. Löhneysen, and R. Hoffmann-Vogel'

The electrical resistance R of metallic nanocontacts subjected to controlled cyclic electromigration in ultrahigh vacuum has been investigated in situ as a function of applied voltage V. For sufficiently small contacts, i.e., large resistance, a decrease of R(V) while increasing V is observed. This effect is tentatively attributed to the presence of contacts separated by thin vacuum barriers in parallel to ohmic nanocontacts. Simple model calculations indicate that both thermal activation or tunneling can lead to this unusual behavior. We describe our data by a tunneling model whose key parameter, i.e., the tunneling distance, changes because of thermal expansion due to Joule heating and/or electrostatic strain arising from the applied voltage. Oxygen exposure during electromigration prevents the formation of negative R(V) slopes, and at the same time enhances the probability of uncontrolled melting, while other gases show little effects. In addition, indication for field emission has been observed in some samples.

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.115406


Quantum interference in off-resonant transport through single molecules

'Kim G. L. Pedersen, Mikkel Strange, Martin Leijnse, Per Hedegård, Gemma C. Solomon, and Jens Paaske'

We provide a simple set of rules for predicting interference effects in off-resonant transport through single molecule junctions. These effects fall into two classes, showing, respectively, an odd or an even number of nodes in the linear conductance within a given molecular charge state, and we demonstrate how to decide the interference class directly from the contacting geometry. For neutral alternant hydrocarbons, we employ the Coulson-Rushbrooke-McLachlan pairing theorem to show that the interference class is decided simply by tunneling on and off the molecule from same or different sublattices. More generally, we investigate a range of smaller molecules by means of exact diagonalization combined with a perturbative treatment of the molecule-lead tunnel coupling. While these results generally agree well with GW calculations, they are shown to be at odds with simpler mean-field treatments. For molecules with spin-degenerate ground states, we show that for most junctions interference causes no transmission nodes, but we argue that it may lead to a nonstandard gate dependence of the zero-bias Kondo resonance.

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.125413


All-optical control of ferromagnetic thin films and nanostructures

'C-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, E. E. Fullerton'

The interplay of light and magnetism allowed light to be used as a probe of magnetic materials. Now the focus has shifted to use polarized light to alter or manipulate magnetism. Here, we demonstrate optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed and may have a major impact on data memory and storage industries through the integration of optical control of ferromagnetic bits.

http://www.sciencemag.org/content/345/6202/1337


Ultrafast optical control of orbital and spin dynamics in a solid-state defect

'Lee C. Bassett, F. Joseph Heremans, David J. Christle, Christopher G. Yale, Guido Burkard, Bob B. Buckley, David D. Awschalom'

Atom-scale defects in semiconductors are promising building blocks for quantum devices, but our understanding of their material-dependent electronic structure, optical interactions, and dissipation mechanisms is lacking. Using picosecond resonant pulses of light, we study the coherent orbital and spin dynamics of a single nitrogen-vacancy center in diamond over time scales spanning six orders of magnitude. We develop a time-domain quantum tomography technique to precisely map the defect’s excited-state Hamiltonian and exploit the excited-state dynamics to control its ground-state spin with optical pulses alone. These techniques generalize to other optically addressable nanoscale spin systems and serve as powerful tools to characterize and control spin qubits for future applications in quantum technology.

http://www.sciencemag.org/content/345/6202/1333


Environment-assisted quantum control of a solid-state spin via coherent dark states

'Jack Hansom, Carsten H. H. Schulte, Claire Le Gall, Clemens Matthiesen, Edmund Clarke, Maxime Hugues, Jacob M. Taylor & Mete Atatüre'

Understanding the interplay between a quantum system and its environment lies at the heart of quantum science and its applications. So far most efforts have focused on circumventing decoherence induced by the environment by either protecting the system from the associated noise1, 2, 3, 4, 5 or by manipulating the environment directly6, 7, 8, 9. Recently, parallel efforts using the environment as a resource have emerged, which could enable dissipation-driven quantum computation and coupling of distant quantum bits10, 11, 12, 13, 14. Here, we realize the optical control of a semiconductor quantum-dot spin by relying on its interaction with an adiabatically evolving spin environment. The emergence of hyperfine-induced, quasi-static optical selection rules enables the optical generation of coherent spin dark states without an external magnetic field. We show that the phase and amplitude of the lasers implement multi-axis manipulation of the basis spanned by the dark and bright states, enabling control via projection into a spin-superposition state. Our approach can be extended, within the scope of quantum control and feedback15, 16, to other systems interacting with an adiabatically evolving environment.

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3077.html


Graphene nanoribbon heterojunctions

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.184.html


Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.183.html


Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene

'Xinghan Cai, Andrei B. Sushkov, Ryan J. Suess, Mohammad M. Jadidi, Gregory S. Jenkins, Luke O. Nyakiti, Rachael L. Myers-Ward, Shanshan Li, Jun Yan, D. Kurt Gaskill, Thomas E. Murphy, H. Dennis Drew & Michael S. Fuhrer'

Terahertz radiation has uses in applications ranging from security to medicine1. However, sensitive room-temperature detection of terahertz radiation is notoriously difficult2. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism; photoexcited carriers rapidly thermalize due to strong electron–electron interactions3, 4, but lose energy to the lattice more slowly3, 5. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating6, 7 or dissimilar contact metals8 produces a net current via the thermoelectric effect. Here, we demonstrate a graphene thermoelectric terahertz photodetector with sensitivity exceeding 10 V W–1 (700 V W–1) at room temperature and noise-equivalent power less than 1,100 pW Hz–1/2 (20 pW Hz–1/2), referenced to the incident (absorbed) power. This implies a performance that is competitive with the best room-temperature terahertz detectors9 for an optimally coupled device, and time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those7, 10. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.182.html


Polycrystalline Graphene with Single Crystalline Electronic Structure

http://pubs.acs.org/doi/abs/10.1021/nl502445j


Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers

'Wei Yan, Lan Meng, Mengxi Liu, Jia-Bin Qiao, Zhao-Dong Chu, Rui-Fen Dou, Zhongfan Liu, Jia-Cai Nie, Donald G. Naugle, and Lin He'

The creation of van der Waals heterostructures based on a graphene monolayer and other two-dimensional crystals has attracted great interest because the atomic registry of the two-dimensional crystals can modify the electronic spectra and properties of graphene. A twisted graphene bilayer can be viewed as a special van der Waals structure composed of two mutually misoriented graphene layers, where the sublayer graphene not only plays the role of a substrate, but also acts in an equivalent role as the top graphene layer in the structure. Here we report the electronic spectra of slightly twisted graphene bilayers studied by scanning tunneling microscopy and spectroscopy. Our experiment demonstrates that twist-induced van Hove singularities are ubiquitously present for rotation angles θ of less than about 3.5°, corresponding to moiré-pattern periods D longer than 4 nm. However, they totally vanish for θ>5.5° (D<2.5nm). Such a behavior indicates that the continuum models, which capture moiré-pattern periodicity more accurately at small rotation angles, are no longer applicable at large rotation angles.

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.115402


Excitation of complex spin dynamics patterns in a quantum-dot electron spin ensemble

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.121301


Tunable Floquet Majorana fermions in driven coupled quantum dots

'Yantao Li, Arijit Kundu, Fan Zhong, and Babak Seradjeh'

We propose a system of coupled quantum dots in proximity to a superconductor and driven by separate ac potentials to realize and detect Floquet Majorana fermions. We show that the appearance of Floquet Majorana fermions can be finely controlled in the expanded parameter space of the drive frequency, amplitude, and phase difference across the two dots. While these Majorana fermions are not topologically protected, the highly tunable setup provides a realistic system for observing the exotic physics associated with Majorana fermions as well as their dynamical generation and manipulation.

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.121401


Unrelated:

Inventing a Modern Periscope

http://www.tested.com/science/464266-inventing-modern-periscope/

Personal tools