Radio-Frequency Quantum Point Contact Charge Detection

Thomas Müller Nanophysics Group, ETH Zürich

In collaboration with

J. Güttinger, B. Küng, T. Choi, S. Hellmüller, D. Bischoff, P. Studerus, C. Barengo, K. Ensslin, T. Ihn GaAs/AlGaAs heterostructures grown by M. Reinwald and W. Wegscheider; S. Schön

Contents

- I. QPC charge detection
- II. Radio-frequency reflectometry
- III. Experimental realisation
- IV. Multi-level tunneling into a graphene quantum dot connected to a single lead

I. Why More Time Resolution?

Single-shot detection

Measurement time

Less restricted by low tunnel rates

I. QPC Charge Detection

Field et al., PRL 1993

I. Time-Resolved Charge Detection

I. Time-Resolved Charge Detection

II. Reflection Coefficient Γ

II. Reflection Coefficient Γ

II. Signal-to-Noise Ratio

II. Schematic Measurement Setup

II. Chip Socket and Carrier

II. Chip Socket and Carrier

high versatility, but large stray capacitance (> 2 pF)

III. "Standard" Matching Circuit

First used for rf SET reflectometry by Schoelkopf *et al.*, Science 1998

III. "Standard" Matching Circuit

First used for rf SET reflectometry by Schoelkopf *et al.*, Science 1998

Sample processing: B. Küng

Calculation:

 $K = 3 \text{ pF} \qquad \text{Sam} \\ \text{B. K} \\ \text{L} = 180 \text{ nH} \\ \text{r} = 2 \Omega \\ \text{R} = 30 \text{ k}\Omega \\ f_{res} \approx \frac{1}{2\pi\sqrt{L(C+K)}}$

APL 97, 202104 (2010)

Sample processing: B. Küng

Calculation:

 $K = 3 \text{ pF} \qquad \text{Sam} \\ B = 180 \text{ nH} \\ r = 2 \Omega \\ R = 30 \text{ k}\Omega \\ f_{res} \approx \frac{1}{2\pi\sqrt{L(C+K)}}$

T = 2 K 50 kHz BW $\Delta G = 0.01 2e^2/h \rightarrow \Delta I = 300 pA$

APL 97, 202104 (2010)

✓ In situ-tunable rf reflectometry setup
✓ Performs significantly better than dc

Sample processing: B. Küng

T = 2 K 50 kHz BW $\Delta G = 0.01 2e^2/h \rightarrow \Delta I = 300 pA$

APL 97, 202104 (2010)

IV. Graphene QD and Charge Detector

J. Güttinger, D. Bischoff

C = 1.2 pF, K = 3.3 pF, L = 100 nH, and r = 3.6 Ω , f = 232 MHz

IV. Graphene QD and Charge Detector

J. Güttinger, D. Bischoff

C = 1.2 pF, K = 3.3 pF, L = 100 nH, and r = 3.6 Ω , f = 232 MHz

IV. Measurement of Temperature

IV. Measurement of Tunnel Rates

IV. Measurement of Tunnel Rates

V. Conclusion

High-performance *in situ*-tunable matching network

Measurements on different types of material systems

Determination of tunnel rates to a single lead in a multi-level regime

VI. Outlook

Lower temperatures for better performance

T. Choi

Study charge transport in *"*exotic" material systems (graphene, InAs, p-GaAs)

VII. Appendix: Power Transfer and Noise

Figure adapted from Roschier et al., JAP 2004

VII. Appendix – ΔG

-

System	$\Delta G\left(\frac{2e^2}{h}\right)$
QD charge sensor on DQD	0.1 [3]
Top gate defined SQDs	0.006 - 0.002 [1, 13, 49, 65]
Top gate defined DQDs	0.01 [96], 0.0015 [65]
AFM defined SQDs	0.02-0.065 [29, 97]
AFM defined DQDs	0.01 [98]
Hybrid S and DDQDs	0.003 [99]
GaAs QPC underneath InAs nanowire SQD	0.065 - 0.12 [100, 101]
InAs nanowire DQD with self-aligned detector	0.05 [102]
Graphene SQD with nanoconstriction	0.08 [103]
Al SET on top of a top gate defined GaAs SQD	0.008 [24]
Lateral SET sensor of a SQD	0.003 [104]

Table 2.1: Dot to charge sensor coupling for different systems as found in literature.

VII. Appendix – rf Performance

Experiment	δq	ΔG	δG	T_{Σ}	BW
	$(e/\sqrt{\text{Hz}})$	$(2e^{2}/h)$	$(e^2/h\sqrt{\text{Hz}})$	(K)	(MHz)
Lu et al. [24]	$\sim 2.4\times 10^{-4}$	0.008	$\sim 4\times 10^{-6}$?	?
Vink et al. [49]	4.4×10^{-4}	0.006	$5.6 imes 10^{-6}$	4.3	1
Reilly et al. [65]	$1.6 imes10^{-3}$	0.0015	5×10^{-6}	~ 18	8
Cassidy et al. [66]	2×10^{-4}	0.025	1×10^{-5}	~ 12	21
Barthel <i>et al.</i> [3, 108], QPC	$6-7 imes10^{-4}$	0.003	4×10^{-6}	?	1.5
Barthel <i>et al.</i> [3], SQD	$2.3 imes 10^{-4}$	0.1	4.6×10^{-5}	?	1.5
Mason <i>et al.</i> [109]	$1.5 imes 10^{-4}$?	?	~ 10	~ 10
Müller <i>et al.</i> [98], GaAs	$6.3 imes10^{-4}$	0.01	$1.3 imes 10^{-5}$	~ 18	~ 3
Müller et al. [103], Graphene	$3.2 imes 10^{-4}$	0.08	$5.1 imes 10^{-5}$	~ 10	> 3
Müller <i>et al.</i> [101], InAs NW	$\sim 4\times 10^{-4}$	0.12	$\sim 1 imes 10^{-4}$	6 - 7	> 3

Table 2.2: Charge and conductance sensitivities for fast charge-detection experiments on quantum dots. The system noise temperature T_{Σ} contains all noise contributions in the experiments. For its determination see text.

VII. Appendix – Impedance Trafo

VII. Appendix – Parameter Influence: f

C = 0.8 pF K = 3 pF L = 180 nH $r = 2 \Omega$

 $R = 30 k\Omega$

VII. Appendix – Parameter Influence: R

C = 0.8 pF K = 3 pF L = 180 nH r = 2 Ω

VII. Appendix – Apllicable Power

K = 3 pFL = 180 nH r = 2 Ω

VII. Appendix: Frequency Response

VII. Optimization of the Tunable Circuit

VII. Appendix – Bandwidth

VII. Appendix: PSD

VII. Appendix: Counting Algorithm

T = 2 K 800 kHz BW

Algorithm: Yuzhelevski et al., RSI 2000

Interlude: Extraction of Tunnel Rates

VII. Appendix – Algorithm Limitations

Signal to noise ratio

$$\frac{\Delta V}{\sigma} \ge \sqrt{2 \ln \left(\frac{\tau}{\Delta t} - 1\right)}.$$

thresholds have to be closer than the 2^{nd} peak

Measurement bandwidth

If bandwidth is too small, Gaussians are not properly fitted

