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We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-

Spin-valley blockade 
in carbon-based quantum dots



The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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Spin blockade

The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
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periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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It is interesting to note a special form of this function:
the graph of S gives a peak with flat top, S00"0$ ! 0. This
function provides an excellent fit to experimental data
(Fig. 4); those are impossible to fit with more conventional
peak functions. Such flat peaks are thus specific for the
model in use and provide strong support of its experimental
validity.

In conclusion, we have presented the theoretical frame-
work for the electron transport via a double quantum dot
influenced and governed by nuclear magnetic field. Our
approach is based on density matrix equations and we
achieve good agreement with experiment [15] assuming
averaging over realizations of nuclear fields. An important
feature which is yet to be observed in the course of faster
and more accurate measurement is the presence of stop-
ping points for any given realization of nuclear fields. The
width of the current dip near the stopping point is estimated
as "B ’ BN for BN ( "ST and "B ’ "ST for BN ) "ST.

If one interprets the effect of nuclear magnetic fields in
terms of spin coherence time, the results of [15] are dis-
couraging if not forbidding for QMC in GaAs quantum dot
systems. The coherence time estimated is just too short,
’10&7 s. We speculate that the presence of stopping points
can remedy the situation. Faster current measurement

would allow us to characterize and, with the aid of external
feedback, partially compensate the nuclear fields by stabi-
lizing the system in the stopping point.
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[8] D. Weinmann, W. Häusler, and B. Kramer, Phys. Rev.

Lett. 74, 984 (1995).
[9] D. Paget, Phys. Rev. B 25, 4444 (1982).

[10] S. I. Erlingsson and Y. V. Nazarov, Phys. Rev. B 66,
155327 (2002).

[11] S. I. Erlingsson, Yu. V. Nazarov, and V. I. Fal’ko, Phys.
Rev. B 64, 195306 (2001).

[12] K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803
(2004).

[13] K. Hashimoto, K. Muraki, N. Kumada, T. Saku, and
Y. Hirayama, Phys. Rev. Lett. 94, 146601 (2005).

[14] S. I. Erlingsson, O. N. Jouravlev, and Yu. V. Nazarov, Phys.
Rev. B 72, 033301 (2005).

[15] F. Koppens et al., Science 309, 1346 (2005).
[16] A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12 639

(2000).
[17] T. H. Stoof and Yu. V. Nazarov, Phys. Rev. B 53, 1050

(1996).

∆2

1 1

0.1

FIG. 3. Average current and that for two realizations in the
limit of validity of (8) (t=BN ! 0:2;"=t ! &50). Note narrow
dips of the current at stopping points.

FIG. 4. Fit of experimental data [15] with ‘‘flat peak’’ relation
(11) gives BN ! 4:75 mT, !in ! 0:63 MHz.

PRL 96, 176804 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
5 MAY 2006

176804-4

Spin blockade measurement

theory (so far)

Koppens et al., Science 2005
Jouravlev & Nazarov, PRL 2006

average of many measurements

‘leakage current’

zero-field peak 
induced by 

hyperfine interaction

(in-plane)



the sum of inverse partial rates and reads

I=e ! !in"nL # nR$2: (10)

The average current as a function of B becomes

hIi=e ! !inS"
!!!
3

p
B=BN$; (11)

where

S"x$ % 4=x2 & 6=x4 '
!!!!!!!
2!

p
erfi "x=

!!!
2

p
$"6=x5 & 2=x3$

# exp"&x2=2$ & 3! erfi2 "x=
!!!
2

p
$ exp"&x2$=x6:

(12)

It is interesting to note a special form of this function:
the graph of S gives a peak with flat top, S00"0$ ! 0. This
function provides an excellent fit to experimental data
(Fig. 4); those are impossible to fit with more conventional
peak functions. Such flat peaks are thus specific for the
model in use and provide strong support of its experimental
validity.

In conclusion, we have presented the theoretical frame-
work for the electron transport via a double quantum dot
influenced and governed by nuclear magnetic field. Our
approach is based on density matrix equations and we
achieve good agreement with experiment [15] assuming
averaging over realizations of nuclear fields. An important
feature which is yet to be observed in the course of faster
and more accurate measurement is the presence of stop-
ping points for any given realization of nuclear fields. The
width of the current dip near the stopping point is estimated
as "B ’ BN for BN ( "ST and "B ’ "ST for BN ) "ST.

If one interprets the effect of nuclear magnetic fields in
terms of spin coherence time, the results of [15] are dis-
couraging if not forbidding for QMC in GaAs quantum dot
systems. The coherence time estimated is just too short,
’10&7 s. We speculate that the presence of stopping points
can remedy the situation. Faster current measurement

would allow us to characterize and, with the aid of external
feedback, partially compensate the nuclear fields by stabi-
lizing the system in the stopping point.
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excitation amplitude B ac or incoherent processes, like cotunnelling,
inelastic transitions (to the S(0,2) state) or the statistical fluctuations
in the nuclear field, whichever of the four has the largest contri-
bution. No dependence of the width on RF power was found within
the experimentally accessible range (B ac , 2mT). Furthermore, we
suspect that the broadening is not dominated by cotunnelling or
inelastic transitions because the corresponding rates are smaller than
the observed broadening (see Supplementary Figs S4b and S2d). The
observed ESR peaks are steeper on the flanks and broader than
expected from the nuclear field fluctuations. In many cases, the peak
width and position are even hysteretic in the sweep direction,
suggesting that the resonance condition is shifted during the field
sweep.We speculate that dynamic nuclear polarization due to feedback
of the electron transport on the nuclear spins plays a central part here37.

Coherent Rabi oscillations
Following the observation of magnetically induced spin flips, we next
test whether we can also coherently rotate the spin by applying RF
bursts with variable length. In contrast to the continuous-wave
experiment, where detection and spin rotation occur at the same
time, we pulse the system into Coulomb blockade during the spin
manipulation. This eliminates decoherence induced by tunnel events
from the left to the right dot during the spin rotations. The
experiment consists of three stages (Fig. 3): initialization through
spin blockade in a statistical mixture of " " and # #, manipulation by
a RF burst in Coulomb blockade, and detection by pulsing back for
projection (onto S(0,2)) and tunnelling to the lead. When one of the
electrons is rotated over (2n þ 1)p (with integer n), the two-electron
state evolves to " # (or # "), giving a maximum contribution to the
current (as before, when the two spins are anti-parallel, one electron
charge moves through the dots). However, no electron flow is
expected after rotations of 2pn, where one would find two parallel
spins in the two dots after the RF burst.
We observe that the dot current oscillates periodically with the RF

burst length (Fig. 4). This oscillation indicates that we performed
driven, coherent electron spin rotations, or Rabi oscillations. A key
characteristic of the Rabi process is a linear dependence of the Rabi
frequency on the RF burst amplitude, B ac (fRabi ¼ gmBB1/h with
B1 ¼ B ac/2 due to the rotating wave approximation). We verify this
by extracting the Rabi frequency from a fit of the current oscillations
of Fig. 4b with a sinusoid, which gives the expected linear behaviour

Figure 2 | ESR spin state spectroscopy. a, Energy diagram showing the
relevant eigenstates of twoelectron spins inadouble-dot, subject to an external
magnetic field and nuclear fields. Because the nuclear field is generally
inhomogeneous, the Zeeman energy is different in the two dots and results
therefore in a different energy for " # and # ". ESR turns the spin states " " and
# # into " # or # ", depending on the nuclear fields in the two dots. The yellow
bandsdenotetherangesinB extwherespinblockadeis lifted(by thenuclearfield
or ESR) and current will flow through the dots.b, Current measured through
the double-dot in the spinblockade regime, with (red trace, offset by 100 fA for
clarity)andwithout(bluetrace)aRFmagneticfield.Satellitepeaksappearasthe
external magnetic field is swept through the spin resonance condition. Each
measurement point is averaged for one second, and is therefore expected to
representanaverageresponseovermanynuclearconfigurations.TheRFpower
Papplied to theCPS isestimated fromthepowerapplied tothecoax lineandthe
attenuation in the lines. Inset, satellite peak height versus RF power
(f ¼ 408MHz,Bext ¼ 70mT, taken at slightly different gate voltage settings).
The current isnormalized to the current atB ext ¼ 0 ( ¼ I0).Unwantedelectric
fieldeffects are reducedbyapplying a compensating signal to the right side gate
with opposite phase as the signal on the stripline (see Supplementary Fig. S4).
This allowed us to obtain this curve up to relatively highRFpowers.c, Current
through the dots when sweeping the RF frequency and stepping themagnetic
field. The ESR satellite peak is already visible at a smallmagnetic field of 20mT
and RF excitation of 100MHz, and its location evolves linearly in field when
increasing the frequency. Forhigher frequencies the satellite peak is broadened
asymmetrically for certain sweeps, visible as vertical stripes.This broadening is
time dependent, hysteretic in sweep direction, and changes with the dot level
alignment. The horizontal line at 180MHz is due to a resonance in the
transmission line inside the dilution refrigerator.

Figure 3 | The control cycle for coherent manipulation of the electron
spin. During the ‘initialization’ stage the double-dot is tuned in the spin
blockade regime. Electrons will move from left to right until the system is
blocked with two parallel spins (either " " or # #; in the figure only the " "
case is shown). For the ‘manipulation’ stage, the right dot potential is pulsed
up so none of the levels in the right dot are accessible (Coulomb blockade),
and a RF burst with a variable duration is applied. ‘Read-out’ of the spin
state at the end of the manipulation stage is done by pulsing the right dot
potential back; electron tunnelling to the right lead will then take place only
if the spins were anti-parallel. The duration of the read-out and initialization
stages combined was 1 ms, long enough (1ms . .1/GL, 1/GM, 1/GR) to have
parallel spins in the dots at the end of the initialization stage with near
certainty (this is checked by signal saturation when the pulse duration is
prolonged). The duration of the manipulation stage is also held fixed at 1ms
to keep the number of pulses per second constant. The RF burst is applied
just before the read-out stage starts.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:

j " lj " l ! j " l j " lþ j # lffiffiffi
2

p ! j " lj # l !

j " l j " l2 j # lffiffiffi
2

p ! j " lj " l

When the RF burst is on-resonance with both spins, the time
evolution is:

j " lj " l ! j " lþ j # lffiffiffi
2

p j " lþ j # lffiffiffi
2

p ! j # lj # l !

j " l2 j # lffiffiffi
2
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2
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

" #2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:

j " lj " l ! j " l j " lþ j # lffiffiffi
2

p ! j " lj # l !

j " l j " l2 j # lffiffiffi
2
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When the RF burst is on-resonance with both spins, the time
evolution is:
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

" #2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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excitation amplitude B ac or incoherent processes, like cotunnelling,
inelastic transitions (to the S(0,2) state) or the statistical fluctuations
in the nuclear field, whichever of the four has the largest contri-
bution. No dependence of the width on RF power was found within
the experimentally accessible range (B ac , 2mT). Furthermore, we
suspect that the broadening is not dominated by cotunnelling or
inelastic transitions because the corresponding rates are smaller than
the observed broadening (see Supplementary Figs S4b and S2d). The
observed ESR peaks are steeper on the flanks and broader than
expected from the nuclear field fluctuations. In many cases, the peak
width and position are even hysteretic in the sweep direction,
suggesting that the resonance condition is shifted during the field
sweep.We speculate that dynamic nuclear polarization due to feedback
of the electron transport on the nuclear spins plays a central part here37.

Coherent Rabi oscillations
Following the observation of magnetically induced spin flips, we next
test whether we can also coherently rotate the spin by applying RF
bursts with variable length. In contrast to the continuous-wave
experiment, where detection and spin rotation occur at the same
time, we pulse the system into Coulomb blockade during the spin
manipulation. This eliminates decoherence induced by tunnel events
from the left to the right dot during the spin rotations. The
experiment consists of three stages (Fig. 3): initialization through
spin blockade in a statistical mixture of " " and # #, manipulation by
a RF burst in Coulomb blockade, and detection by pulsing back for
projection (onto S(0,2)) and tunnelling to the lead. When one of the
electrons is rotated over (2n þ 1)p (with integer n), the two-electron
state evolves to " # (or # "), giving a maximum contribution to the
current (as before, when the two spins are anti-parallel, one electron
charge moves through the dots). However, no electron flow is
expected after rotations of 2pn, where one would find two parallel
spins in the two dots after the RF burst.
We observe that the dot current oscillates periodically with the RF

burst length (Fig. 4). This oscillation indicates that we performed
driven, coherent electron spin rotations, or Rabi oscillations. A key
characteristic of the Rabi process is a linear dependence of the Rabi
frequency on the RF burst amplitude, B ac (fRabi ¼ gmBB1/h with
B1 ¼ B ac/2 due to the rotating wave approximation). We verify this
by extracting the Rabi frequency from a fit of the current oscillations
of Fig. 4b with a sinusoid, which gives the expected linear behaviour

Figure 2 | ESR spin state spectroscopy. a, Energy diagram showing the
relevant eigenstates of twoelectron spins inadouble-dot, subject to an external
magnetic field and nuclear fields. Because the nuclear field is generally
inhomogeneous, the Zeeman energy is different in the two dots and results
therefore in a different energy for " # and # ". ESR turns the spin states " " and
# # into " # or # ", depending on the nuclear fields in the two dots. The yellow
bandsdenotetherangesinB extwherespinblockadeis lifted(by thenuclearfield
or ESR) and current will flow through the dots.b, Current measured through
the double-dot in the spinblockade regime, with (red trace, offset by 100 fA for
clarity)andwithout(bluetrace)aRFmagneticfield.Satellitepeaksappearasthe
external magnetic field is swept through the spin resonance condition. Each
measurement point is averaged for one second, and is therefore expected to
representanaverageresponseovermanynuclearconfigurations.TheRFpower
Papplied to theCPS isestimated fromthepowerapplied tothecoax lineandthe
attenuation in the lines. Inset, satellite peak height versus RF power
(f ¼ 408MHz,Bext ¼ 70mT, taken at slightly different gate voltage settings).
The current isnormalized to the current atB ext ¼ 0 ( ¼ I0).Unwantedelectric
fieldeffects are reducedbyapplying a compensating signal to the right side gate
with opposite phase as the signal on the stripline (see Supplementary Fig. S4).
This allowed us to obtain this curve up to relatively highRFpowers.c, Current
through the dots when sweeping the RF frequency and stepping themagnetic
field. The ESR satellite peak is already visible at a smallmagnetic field of 20mT
and RF excitation of 100MHz, and its location evolves linearly in field when
increasing the frequency. Forhigher frequencies the satellite peak is broadened
asymmetrically for certain sweeps, visible as vertical stripes.This broadening is
time dependent, hysteretic in sweep direction, and changes with the dot level
alignment. The horizontal line at 180MHz is due to a resonance in the
transmission line inside the dilution refrigerator.

Figure 3 | The control cycle for coherent manipulation of the electron
spin. During the ‘initialization’ stage the double-dot is tuned in the spin
blockade regime. Electrons will move from left to right until the system is
blocked with two parallel spins (either " " or # #; in the figure only the " "
case is shown). For the ‘manipulation’ stage, the right dot potential is pulsed
up so none of the levels in the right dot are accessible (Coulomb blockade),
and a RF burst with a variable duration is applied. ‘Read-out’ of the spin
state at the end of the manipulation stage is done by pulsing the right dot
potential back; electron tunnelling to the right lead will then take place only
if the spins were anti-parallel. The duration of the read-out and initialization
stages combined was 1 ms, long enough (1ms . .1/GL, 1/GM, 1/GR) to have
parallel spins in the dots at the end of the initialization stage with near
certainty (this is checked by signal saturation when the pulse duration is
prolonged). The duration of the manipulation stage is also held fixed at 1ms
to keep the number of pulses per second constant. The RF burst is applied
just before the read-out stage starts.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1
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perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
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excitation amplitude B ac or incoherent processes, like cotunnelling,
inelastic transitions (to the S(0,2) state) or the statistical fluctuations
in the nuclear field, whichever of the four has the largest contri-
bution. No dependence of the width on RF power was found within
the experimentally accessible range (B ac , 2mT). Furthermore, we
suspect that the broadening is not dominated by cotunnelling or
inelastic transitions because the corresponding rates are smaller than
the observed broadening (see Supplementary Figs S4b and S2d). The
observed ESR peaks are steeper on the flanks and broader than
expected from the nuclear field fluctuations. In many cases, the peak
width and position are even hysteretic in the sweep direction,
suggesting that the resonance condition is shifted during the field
sweep.We speculate that dynamic nuclear polarization due to feedback
of the electron transport on the nuclear spins plays a central part here37.

Coherent Rabi oscillations
Following the observation of magnetically induced spin flips, we next
test whether we can also coherently rotate the spin by applying RF
bursts with variable length. In contrast to the continuous-wave
experiment, where detection and spin rotation occur at the same
time, we pulse the system into Coulomb blockade during the spin
manipulation. This eliminates decoherence induced by tunnel events
from the left to the right dot during the spin rotations. The
experiment consists of three stages (Fig. 3): initialization through
spin blockade in a statistical mixture of " " and # #, manipulation by
a RF burst in Coulomb blockade, and detection by pulsing back for
projection (onto S(0,2)) and tunnelling to the lead. When one of the
electrons is rotated over (2n þ 1)p (with integer n), the two-electron
state evolves to " # (or # "), giving a maximum contribution to the
current (as before, when the two spins are anti-parallel, one electron
charge moves through the dots). However, no electron flow is
expected after rotations of 2pn, where one would find two parallel
spins in the two dots after the RF burst.
We observe that the dot current oscillates periodically with the RF

burst length (Fig. 4). This oscillation indicates that we performed
driven, coherent electron spin rotations, or Rabi oscillations. A key
characteristic of the Rabi process is a linear dependence of the Rabi
frequency on the RF burst amplitude, B ac (fRabi ¼ gmBB1/h with
B1 ¼ B ac/2 due to the rotating wave approximation). We verify this
by extracting the Rabi frequency from a fit of the current oscillations
of Fig. 4b with a sinusoid, which gives the expected linear behaviour

Figure 2 | ESR spin state spectroscopy. a, Energy diagram showing the
relevant eigenstates of twoelectron spins inadouble-dot, subject to an external
magnetic field and nuclear fields. Because the nuclear field is generally
inhomogeneous, the Zeeman energy is different in the two dots and results
therefore in a different energy for " # and # ". ESR turns the spin states " " and
# # into " # or # ", depending on the nuclear fields in the two dots. The yellow
bandsdenotetherangesinB extwherespinblockadeis lifted(by thenuclearfield
or ESR) and current will flow through the dots.b, Current measured through
the double-dot in the spinblockade regime, with (red trace, offset by 100 fA for
clarity)andwithout(bluetrace)aRFmagneticfield.Satellitepeaksappearasthe
external magnetic field is swept through the spin resonance condition. Each
measurement point is averaged for one second, and is therefore expected to
representanaverageresponseovermanynuclearconfigurations.TheRFpower
Papplied to theCPS isestimated fromthepowerapplied tothecoax lineandthe
attenuation in the lines. Inset, satellite peak height versus RF power
(f ¼ 408MHz,Bext ¼ 70mT, taken at slightly different gate voltage settings).
The current isnormalized to the current atB ext ¼ 0 ( ¼ I0).Unwantedelectric
fieldeffects are reducedbyapplying a compensating signal to the right side gate
with opposite phase as the signal on the stripline (see Supplementary Fig. S4).
This allowed us to obtain this curve up to relatively highRFpowers.c, Current
through the dots when sweeping the RF frequency and stepping themagnetic
field. The ESR satellite peak is already visible at a smallmagnetic field of 20mT
and RF excitation of 100MHz, and its location evolves linearly in field when
increasing the frequency. Forhigher frequencies the satellite peak is broadened
asymmetrically for certain sweeps, visible as vertical stripes.This broadening is
time dependent, hysteretic in sweep direction, and changes with the dot level
alignment. The horizontal line at 180MHz is due to a resonance in the
transmission line inside the dilution refrigerator.

Figure 3 | The control cycle for coherent manipulation of the electron
spin. During the ‘initialization’ stage the double-dot is tuned in the spin
blockade regime. Electrons will move from left to right until the system is
blocked with two parallel spins (either " " or # #; in the figure only the " "
case is shown). For the ‘manipulation’ stage, the right dot potential is pulsed
up so none of the levels in the right dot are accessible (Coulomb blockade),
and a RF burst with a variable duration is applied. ‘Read-out’ of the spin
state at the end of the manipulation stage is done by pulsing the right dot
potential back; electron tunnelling to the right lead will then take place only
if the spins were anti-parallel. The duration of the read-out and initialization
stages combined was 1 ms, long enough (1ms . .1/GL, 1/GM, 1/GR) to have
parallel spins in the dots at the end of the initialization stage with near
certainty (this is checked by signal saturation when the pulse duration is
prolonged). The duration of the manipulation stage is also held fixed at 1ms
to keep the number of pulses per second constant. The RF burst is applied
just before the read-out stage starts.
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spectroscopic measurements by Zhou et al. !2006" and
Bostwick et al. !2007", the electronic properties of
graphene are described by an equation !the Dirac equa-
tion" of relativistic quantum mechanics, even though the
microscopic Hamiltonian of carbon atoms is nonrelativ-
istic. While graphene itself is not superconducting, it ac-
quires superconducting properties by proximity to a su-
perconductor. We therefore have the unique possibility
to bridge the gap between relativity and superconductiv-
ity in a real material.

For example, Fig. 2 shows two superconducting elec-
trodes on top of a carbon monolayer. The supercurrent
measured through this device by Heersche et al. !2007" is
carried by massless electrons and holes, converted into
each other by the superconducting pair potential. This
conversion process, known as Andreev reflection !An-
dreev, 1964", is described by a superconducting variant
of the Dirac equation !Beenakker, 2006".

In this Colloquium, we review the unusual physics of
Andreev reflection in graphene. For a broader perspec-
tive, we compare and contrast this coupling of electrons
and holes by a superconducting pair potential with the
coupling of electrons and holes by an electrostatic po-
tential. The latter phenomenon is called Klein tunneling
!Cheianov and Fal’ko, 2006; Katsnelson, et al., 2006"
with reference to relativistic quantum mechanics, where
it represents the tunneling of a particle into the Dirac
sea of antiparticles !Klein, 1929". Klein tunneling in
graphene is the tunneling of an electron from the con-
duction band into hole states from the valence band
!which plays the role of the Dirac sea".

The two phenomena, Andreev reflection and Klein
tunneling, are introduced in Secs. III and IV, respec-
tively, and then compared in Sec. V. But first we summa-
rize, in Sec. II, the special properties of graphene that
govern these two phenomena. More comprehensive re-
views of graphene have been written by Castro Neto et
al. !2006, 2007", Geim and Novoselov !2007", Gusynin et
al. !2007", Katsnelson !2007", and Katsnelson and No-
voselov !2007".

II. BASIC PHYSICS OF GRAPHENE

A. Dirac equation

The unusual band structure of a single layer of graph-
ite, shown in Fig. 3, has been known for 60 years !Wal-

lace, 1947". Near each corner of the hexagonal first Bril-
louin zone, the energy E has a conical dependence on
the two-dimensional wave vector k= !kx ,ky". Denoting
by !k=k−K the displacement from the corner at wave
vector K, one has for !ka"1 the dispersion relation

#E# = #v#!k# . !1"

The velocity v$ 1
2
%3$a /#&106 m/s is proportional to

the lattice constant a=0.246 nm and to the nearest-
neighbor hopping energy $&3 eV on the honeycomb
lattice of carbon atoms !shown in Fig. 4".

The linear dispersion relation !1" implies an energy-
independent group velocity vgroup$!E /#!k=v of low-
energy excitations !E"$". These electron excitations
!filled states in the conduction band" or hole excitations
!empty states in the valence band", therefore, have zero
effective mass. DiVincenzo and Mele !1984" and Se-
menoff !1984" noticed that—even though v"c—such
massless excitations are governed by a wave equation,
the Dirac equation, of relativistic quantum mechanics,

− i#v' 0 !x − i!y

!x + i!y 0
('%A

%B
( = E'%A

%B
( . !2"

)The derivation of this equation for a carbon monolayer
goes back to McClure !1956".*

The two components %A and %B give the amplitude
%A!r"eiK·r and %B!r"eiK·r of the wave function on the A
and B sublattices of the honeycomb lattice !see Fig. 4".
The differential operator couples %A to %B but not to
itself, in view of the fact that nearest-neighbor hopping

FIG. 2. !Color online" Atomic force microscope image !false
color" of a carbon monolayer covered by two superconducting
Al electrodes. From Heersche et al., 2007.

FIG. 3. !Color online" Band structure E!kx ,ky" of a carbon
monolayer. The hexagonal first Brillouin zone is indicated. The
conduction band !E&0" and the valence band !E'0" form
conically shaped valleys that touch at the six corners of the
Brillouin zone !called conical points, Dirac points, or K
points". The three corners marked by a white dot are con-
nected by reciprocal-lattice vectors, so they are equivalent.
Likewise, the three corners marked by a black dot are equiva-
lent. In undoped grapheme, the Fermi level passes through the
Dirac points. Illustration by C. Jozsa and B. J. van Wees.
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tential. The latter phenomenon is called Klein tunneling
!Cheianov and Fal’ko, 2006; Katsnelson, et al., 2006"
with reference to relativistic quantum mechanics, where
it represents the tunneling of a particle into the Dirac
sea of antiparticles !Klein, 1929". Klein tunneling in
graphene is the tunneling of an electron from the con-
duction band into hole states from the valence band
!which plays the role of the Dirac sea".

The two phenomena, Andreev reflection and Klein
tunneling, are introduced in Secs. III and IV, respec-
tively, and then compared in Sec. V. But first we summa-
rize, in Sec. II, the special properties of graphene that
govern these two phenomena. More comprehensive re-
views of graphene have been written by Castro Neto et
al. !2006, 2007", Geim and Novoselov !2007", Gusynin et
al. !2007", Katsnelson !2007", and Katsnelson and No-
voselov !2007".

II. BASIC PHYSICS OF GRAPHENE

A. Dirac equation

The unusual band structure of a single layer of graph-
ite, shown in Fig. 3, has been known for 60 years !Wal-

lace, 1947". Near each corner of the hexagonal first Bril-
louin zone, the energy E has a conical dependence on
the two-dimensional wave vector k= !kx ,ky". Denoting
by !k=k−K the displacement from the corner at wave
vector K, one has for !ka"1 the dispersion relation

#E# = #v#!k# . !1"

The velocity v$ 1
2
%3$a /#&106 m/s is proportional to

the lattice constant a=0.246 nm and to the nearest-
neighbor hopping energy $&3 eV on the honeycomb
lattice of carbon atoms !shown in Fig. 4".

The linear dispersion relation !1" implies an energy-
independent group velocity vgroup$!E /#!k=v of low-
energy excitations !E"$". These electron excitations
!filled states in the conduction band" or hole excitations
!empty states in the valence band", therefore, have zero
effective mass. DiVincenzo and Mele !1984" and Se-
menoff !1984" noticed that—even though v"c—such
massless excitations are governed by a wave equation,
the Dirac equation, of relativistic quantum mechanics,

− i#v' 0 !x − i!y

!x + i!y 0
('%A

%B
( = E'%A

%B
( . !2"

)The derivation of this equation for a carbon monolayer
goes back to McClure !1956".*

The two components %A and %B give the amplitude
%A!r"eiK·r and %B!r"eiK·r of the wave function on the A
and B sublattices of the honeycomb lattice !see Fig. 4".
The differential operator couples %A to %B but not to
itself, in view of the fact that nearest-neighbor hopping

FIG. 2. !Color online" Atomic force microscope image !false
color" of a carbon monolayer covered by two superconducting
Al electrodes. From Heersche et al., 2007.

FIG. 3. !Color online" Band structure E!kx ,ky" of a carbon
monolayer. The hexagonal first Brillouin zone is indicated. The
conduction band !E&0" and the valence band !E'0" form
conically shaped valleys that touch at the six corners of the
Brillouin zone !called conical points, Dirac points, or K
points". The three corners marked by a white dot are con-
nected by reciprocal-lattice vectors, so they are equivalent.
Likewise, the three corners marked by a black dot are equiva-
lent. In undoped grapheme, the Fermi level passes through the
Dirac points. Illustration by C. Jozsa and B. J. van Wees.
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Leakage current in the spin-valley blockade
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Figure 1 |Nanotube double dot with integrated charge sensor. a, Scanning electron micrograph (with false colour) of a device similar to the measured
12C and 13C devices. The carbon nanotube (not visible) runs horizontally under the four Pd contacts (red). Top-gates (blue) create voltage-tunable tunnel
barriers enabling the formation of a single or double quantum dot between contacts 1 and 2. Plunger gates L and R (green) control the occupancy of the
double dot. A separate single dot contacted by Pd contacts 3 and 4 is controlled with gate plunger gate S (grey) and is capacitively coupled to the double
dot by a coupling wire (orange). b, Current through the double dot, Idd, (colour scale) with the top-gates configured to form a large single dot. c, When
carriers beneath the middle gate, M, are depleted, Idd shows typical double-dot transport behaviour, demarcating the honeycomb charge stability pattern.
d, Within certain gate voltage ranges, honeycomb cells with larger addition energy and fourfold periodicity (outlined with dashed lines) indicate the filling
of spin and orbital states in shells. Source–drain bias is −1.0mV for b–d.

that for negative bias (purple and green), spin-blockade leakage
current is strongly peaked at B‖ = 0, whereas for positive bias (red),
the unblockaded current does not depend on field. The peak in
leakage current is shown for two values of VM, indicating that the
width of the peak is independent of interdot tunnel coupling t . As
discussed below, this field dependence can be understood in terms
of hyperfine-mediated spin relaxation.

The striking difference in field dependence of spin-blockade
leakage current between 12C and 13C devices is illustrated in
Fig. 3a,b. These data show that for negative (spin-blockaded) bias,
leakage current is a minimum at B‖ = 0 for the 12C device and a
maximum at B‖ = 0 for the 13C device. In fourteen instances of spin
blockade measured in four devices (two 13C and two 12C), we find
that leakage current minima can occur at B‖ = 0 in both 12C and
13C devices, particularly for stronger interdot tunnelling. For weak
interdot tunnelling, however, only the 13C devices show maxima of

spin-blockade leakage at B‖ = 0, presumably because the width and
height of this feature are strongly suppressed in 12C nanotubes. In
all cases, the positive bias (non-spin-blockade) current shows no
appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a function of
B‖ at fixed detuning (the detuning value is shown as a black line
in Fig. 3a), along with a best-fit Lorentzian, for the 12C device. The
Lorentzian formwas notmotivated by theory, but seems to fit rather
well. The width of the dip around B‖ = 0 decreases with decreasing
interdot tunnelling (configuration Fig. 3e has t ∼ 50 µeV, on the
basis of charge-state transition width21), which may explain why it
is not observed in the weakly coupled regime of Fig. 3b,f. We note
that a similar zero-field dip in spin-blockade leakage current was
recently reported in a double dot formed in an InAs nanowire24.
There the dip was attributed to spin–orbit coupling, an effect that
is also present in carbon nanotubes25.

322 NATURE PHYSICS | VOL 5 | MAY 2009 | www.nature.com/naturephysics

carbon nanotube 
underneath

Spin-valley blockade in carbon nanotube double quantum dots

András Pályi and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: May 15, 2010)

We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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theory:
Palyi & Burkard, PRB 2009-2010

von Stecher et al., PRB 2010



counterclockwise (K0) isospin state at small B and then
changes to a clockwise (K) isospin at B! 250 mT. The
energy to add the third electron does the opposite. Fits to
the low field slopes for the second and third electron addi-
tion energies yield moments of 390 and "270 !eV=T,
respectively, with a difference in magnitudes within 10%
of 2!B, a signature of a spin-orbit-dominated spectrum
[13]. Thus we infer an orbital moment!orb ¼ 330 !eV=T
and a zero-field spin-orbit splitting !SO ¼ 170 !eV.

A consequence of the spectrum in Fig. 3(d) is a predicted
[15] minimum in T1 as the two K

0 states with opposite spin
approach one another at Bspin ¼ !SO=g!B, which for this

nanotube occurs at 1.4 T [cf. Fig. 3(d)]. The expected
coupling of these two states is via 1D bending-mode

phonons with quadratic dispersion, leading to a T1 /
ffiffiffiffi
!

p

dependence on the energy splitting ! due to the density-
of-states singularity at zero energy in 1D [15]. This is in
contrast to higher dimensions, where T1 diverges as! ! 0
[15,27,29].
Values for T1, extracted from fits as in Fig. 3(b), are

shown in Fig. 3(e), where a minimum in T1 is observed at
the predicted value B! 1:4 T. Also shown in Fig. 3(e) is a

fit of the form T1 ¼ C
ffiffiffiffiffiffi
!"

p
, where the splitting !" ¼

g!B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB cos""!SO=g!BÞ2 þ ðB sin"Þ2

p
is anticrossed,

accounting for a misalignment angle " between the nano-
tube axis and the direction of the applied field [30].
For these fits, we use g ¼ 2 and the measured quantities
!SO and " (5' determined by the electron micrograph); the
only free parameter is an overall scale for T1, C ¼
65 ns=

ffiffiffiffiffiffiffiffiffiffi
!eV

p
, only a factor of !5 smaller than the esti-

mates in Ref. [15]. Attributing the measured T1 minimum
to this mechanism requires loading a two-electron state
involving at least one of the two higher states of Fig. 3(d) at
step R, which is expected because the levels of the left
dot are well below the electrochemical potential of the
left lead at R. We note that hyperfine relaxation should
also be strongest near a degeneracy [25], but the ratio
!"=ðg!BBnucÞ ! 20 (Ref. [16]) would require huge inelas-
tic tunnel rates ruled out by transport measurements to
explain the measured T1.
We do not observe signatures of hyperfine-mediated

relaxation near B ¼ 0 [31], but note that a difference in
effective magnetic fields between the two dots should
induce dephasing of prepared two-particle spin and isospin
states. To measure the inhomogeneous dephasing time T(

2
of a state atB ¼ 0, a pulse cycle [Fig. 4(a)] first prepares an
ð0; 2Þ state at P, then separates the electrons via P0 into
ð1; 1Þ at S for a time #s, and finally measures the return
probability to ð0; 2Þ at M [3]. For small #s, the prepared
state always returns to ð0; 2Þ. For #s * T(

2 , a fraction of
prepared states evolves into blocked states, reducing the
return probability within the pulse triangle [Fig. 4(a)].
The dephasing time is obtained from the value of gs in

the center of the pulse triangle versus #s, which reflects the
probability of return to ð0; 2Þ when calibrated against the
equilibrium ð1; 1Þ and ð0; 2Þ values of gs [Fig. 4(b)]. A
likely source of dephasing is the hyperfine interaction.
Assuming a difference in Overhauser fields acting on the
two electrons of root mean square strength $Bjj

nuc parallel
to the nanotube axis [5,32], the decay is fit to a Gaussian
form, giving T(

2 ¼ @=g!B$B
jj
nuc ¼ 3:2 ns. The corre-

sponding $Bjj
nuc ¼ 1:8 mT is a factor of 2 smaller than

our estimate of the single dot nuclear field Bnuc in 13C
nanotubes [33]. The difference may be due to anisotropic
dipolar hyperfine coupling [34] or to accidental suppres-

sion of $Bjj
nuc [5]. Future work on 12C nanotubes will allow

dephasing mechanisms other than the hyperfine interaction
to be investigated.
Finally, we note that the saturation value of the return

probability in Fig. 4(c) is 0.17, smaller than the value of
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interpretation that it is governed by Bnuc rather than t . Assuming
Gaussian-distributed Overhauser fields and uniform coupling, Bnuc
is related to the hyperfine coupling constantA by gµBBnuc =A/

√
N ,

where g is the electron g -factor and N is the number of 13C nuclei
in each dot22. TakingN ∼3–10×104 and g =2 (see Supplementary
Information), yields A∼ 1–2×10−4 eV, a value that is two orders
of magnitude larger than predicted for carbon nanotubes8 or
measured in fullerenes9.

Signatures of dynamic nuclear polarization provide further
evidence of a strong hyperfine interaction in 13C double dots.
Hysteresis in the spin-blockade leakage current near zero detuning

is observed when the magnetic field is swept over a tesla-scale
range, as shown in Fig. 4a. The data in Fig. 4a,b are from the
same 13C device as in Fig. 3, but with the barriers tuned such
that cotunnelling processes provide a significant contribution to
the leakage current.

We interpret the hysteresis in Fig. 4a as resulting from a net
nuclear polarization induced by the electron spin flips required
to circumvent spin blockade26. We speculate that this nuclear
polarization generates an Overhauser field felt by the electron
spins that opposes B‖ once B‖ passes through zero. The value
of the coercive field, Bc ∼ 0.6 T, the external field at which
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interpretation that it is governed by Bnuc rather than t . Assuming
Gaussian-distributed Overhauser fields and uniform coupling, Bnuc
is related to the hyperfine coupling constantA by gµBBnuc =A/

√
N ,

where g is the electron g -factor and N is the number of 13C nuclei
in each dot22. TakingN ∼3–10×104 and g =2 (see Supplementary
Information), yields A∼ 1–2×10−4 eV, a value that is two orders
of magnitude larger than predicted for carbon nanotubes8 or
measured in fullerenes9.

Signatures of dynamic nuclear polarization provide further
evidence of a strong hyperfine interaction in 13C double dots.
Hysteresis in the spin-blockade leakage current near zero detuning

is observed when the magnetic field is swept over a tesla-scale
range, as shown in Fig. 4a. The data in Fig. 4a,b are from the
same 13C device as in Fig. 3, but with the barriers tuned such
that cotunnelling processes provide a significant contribution to
the leakage current.

We interpret the hysteresis in Fig. 4a as resulting from a net
nuclear polarization induced by the electron spin flips required
to circumvent spin blockade26. We speculate that this nuclear
polarization generates an Overhauser field felt by the electron
spins that opposes B‖ once B‖ passes through zero. The value
of the coercive field, Bc ∼ 0.6 T, the external field at which
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Spin-valley blockade in carbon nanotube double quantum dots

András Pályi and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: May 15, 2010)

We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin

B

x

z

barrier barrier barrier

} }

dot L dot R

S D

ΓL ΓRt

FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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FIG. 2: (color online) a) Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned
with the tube axis. b) Magnetic field dependence of the spin-
orbit-split single-electron ground state sublevels of a nanotube
quantum dot, obtained from diagonalizing H0 + Heff,dis [see
Eqs. (5),(9)]. Spin and valley quantum numbers of the energy
levels are indicated on the right.

the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψvs)lσ ≡ (ψv)lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (rlσ)χs,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, rlσ = (xlσ, zlσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕK,A = ϕK′,B =
0, ϕK′,A = η and ϕK,B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[vF (σxpx + vσypz) + Vconf(z)]




Ψ(v)

A

Ψ(v)
B



 = E




Ψ(v)

A

Ψ(v)
B



 .

(2)
Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py) appears in the envelope
Hamiltonian. The functions Ψ(v)

σ and ψvs are normalized:

1 =
∫ 2πR

0
dx

∫ ∞

−∞
dz

(
|Ψ(v)

A (r)|2 + |Ψ(v)
B (r)|2

)
,(3a)

1 =
∑

lσ

(ψvs)†lσ(ψvs)lσ, (3b)

where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential Vi,
i.e., (Hdis,TB)i,j = Viδij . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈Vi〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈ViVj〉 = δij〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑

vs

|ψvs〉〈ψvs|. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP

= (b0τ̃0 + bxτ̃x + by τ̃y + bz τ̃z)⊗ s0

≡ (b0τ̃0 + b · τ̃ )⊗ s0, (5)

where

bk = Ωcell

∑

lσ

VlσF (k)
lσ (6)

for k ∈ {0, x, y, z}. Here, F (0)
lσ =

∑
v |Ψ(v)

σ (rlσ)|2/2,
F (z)
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FIG. 2: (color online) a) Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned
with the tube axis. b) Magnetic field dependence of the spin-
orbit-split single-electron ground state sublevels of a nanotube
quantum dot, obtained from diagonalizing H0 + Heff,dis [see
Eqs. (5),(9)]. Spin and valley quantum numbers of the energy
levels are indicated on the right.

the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψv s) lσ ≡ (ψv ) lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (r lσ)χs ,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, r lσ = (x lσ, z lσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕ K , A = ϕ K ′ , B =
0, ϕ K ′ , A = η and ϕ K , B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[v F (σx px + vσy pz ) + Vconf(z)]
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Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py ) appears in the envelope
Hamiltonian. The functions Ψ(v)

σ and ψv s are normalized:

1 =
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,(3a)
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where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential V i ,
i.e., (Hdis,TB) i , j = V i δ i j . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈V i〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈V i V j 〉 = δ i j 〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑
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|ψv s〉〈ψv s |. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is
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the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψvs)lσ ≡ (ψv)lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (rlσ)χs,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, rlσ = (xlσ, zlσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕK,A = ϕK′,B =
0, ϕK′,A = η and ϕK,B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[vF (σxpx + vσypz) + Vconf(z)]
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Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py) appears in the envelope
Hamiltonian. The functions Ψ(v)

σ and ψvs are normalized:

1 =
∫ 2πR

0
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1 =
∑

lσ

(ψvs)†lσ(ψvs)lσ, (3b)

where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential Vi,
i.e., (Hdis,TB)i,j = Viδij . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈Vi〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈ViVj〉 = δij〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑

vs

|ψvs〉〈ψvs|. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP

= (b0τ̃0 + bxτ̃x + by τ̃y + bz τ̃z)⊗ s0

≡ (b0τ̃0 + b · τ̃ )⊗ s0, (5)

where
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VlσF (k)
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for k ∈ {0, x, y, z}. Here, F (0)
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FIG. 2: (color online) a) Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned
with the tube axis. b) Magnetic field dependence of the spin-
orbit-split single-electron ground state sublevels of a nanotube
quantum dot, obtained from diagonalizing H0 + Heff,dis [see
Eqs. (5),(9)]. Spin and valley quantum numbers of the energy
levels are indicated on the right.

the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψv s) lσ ≡ (ψv ) lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (r lσ)χs ,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, r lσ = (x lσ, z lσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕ K , A = ϕ K ′ , B =
0, ϕ K ′ , A = η and ϕ K , B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[v F (σx px + vσy pz ) + Vconf(z)]
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Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py ) appears in the envelope
Hamiltonian. The functions Ψ(v)

σ and ψv s are normalized:
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1 =
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where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential V i ,
i.e., (Hdis,TB) i , j = V i δ i j . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈V i〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈V i V j 〉 = δ i j 〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑

v s

|ψv s〉〈ψv s |. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP

= (b0τ̃0 + bx τ̃x + by τ̃y + bz τ̃z )⊗ s0

≡ (b0τ̃0 + b · τ̃ )⊗ s0, (5)

where
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FIG. 2: (color online) a) Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned
with the tube axis. b) Magnetic field dependence of the spin-
orbit-split single-electron ground state sublevels of a nanotube
quantum dot, obtained from diagonalizing H0 + Heff,dis [see
Eqs. (5),(9)]. Spin and valley quantum numbers of the energy
levels are indicated on the right.

the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψvs)lσ ≡ (ψv)lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (rlσ)χs,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, rlσ = (xlσ, zlσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕK,A = ϕK′,B =
0, ϕK′,A = η and ϕK,B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[vF (σxpx + vσypz) + Vconf(z)]
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Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py) appears in the envelope
Hamiltonian. The functions Ψ(v)

σ and ψvs are normalized:

1 =
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1 =
∑
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(ψvs)†lσ(ψvs)lσ, (3b)

where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential Vi,
i.e., (Hdis,TB)i,j = Viδij . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈Vi〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈ViVj〉 = δij〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑

vs

|ψvs〉〈ψvs|. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP

= (b0τ̃0 + bxτ̃x + by τ̃y + bz τ̃z)⊗ s0

≡ (b0τ̃0 + b · τ̃ )⊗ s0, (5)

where

bk = Ωcell

∑
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VlσF (k)
lσ (6)

for k ∈ {0, x, y, z}. Here, F (0)
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FIG. 2: (color online) a) Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned
with the tube axis. b) Magnetic field dependence of the spin-
orbit-split single-electron ground state sublevels of a nanotube
quantum dot, obtained from diagonalizing H0 + Heff,dis [see
Eqs. (5),(9)]. Spin and valley quantum numbers of the energy
levels are indicated on the right.

the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψv s) lσ ≡ (ψv ) lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (r lσ)χs ,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, r lσ = (x lσ, z lσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕ K , A = ϕ K ′ , B =
0, ϕ K ′ , A = η and ϕ K , B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[v F (σx px + vσy pz ) + Vconf(z)]
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Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py ) appears in the envelope
Hamiltonian. The functions Ψ(v)

σ and ψv s are normalized:
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where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential V i ,
i.e., (Hdis,TB) i , j = V i δ i j . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈V i〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈V i V j 〉 = δ i j 〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑
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|ψv s〉〈ψv s |. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP

= (b0τ̃0 + bx τ̃x + by τ̃y + bz τ̃z )⊗ s0
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FIG. 2: (color online) a) Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned
with the tube axis. b) Magnetic field dependence of the spin-
orbit-split single-electron ground state sublevels of a nanotube
quantum dot, obtained from diagonalizing H0 + Heff,dis [see
Eqs. (5),(9)]. Spin and valley quantum numbers of the energy
levels are indicated on the right.

the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψvs)lσ ≡ (ψv)lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (rlσ)χs,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, rlσ = (xlσ, zlσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕK,A = ϕK′,B =
0, ϕK′,A = η and ϕK,B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[vF (σxpx + vσypz) + Vconf(z)]
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Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py) appears in the envelope
Hamiltonian. The functions Ψ(v)
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where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential Vi,
i.e., (Hdis,TB)i,j = Viδij . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈Vi〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈ViVj〉 = δij〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑

vs

|ψvs〉〈ψvs|. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP

= (b0τ̃0 + bxτ̃x + by τ̃y + bz τ̃z)⊗ s0

≡ (b0τ̃0 + b · τ̃ )⊗ s0, (5)

where
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FIG. 2: (color online) a) Schematic of a quantum dot in a
carbon nanotube, with an external magnetic field B aligned
with the tube axis. b) Magnetic field dependence of the spin-
orbit-split single-electron ground state sublevels of a nanotube
quantum dot, obtained from diagonalizing H0 + Heff,dis [see
Eqs. (5),(9)]. Spin and valley quantum numbers of the energy
levels are indicated on the right.

the CNT, and the x coordinate is measured along the
circumference of the nanotube as indicated in Fig. 2a.

The four tight-binding wave functions, corresponding
to a fourfold degenerate single-particle energy level of the
QD have the form49

(ψv s) lσ ≡ (ψv ) lσχs =
√

Ωcelle
i(vK·rlσ+ϕvσ)Ψ(v)

σ (r lσ)χs ,
(1)

where s ∈ (↑, ↓) ≡ (+,−) and v ∈ (K, K ′) ≡ (+,−)
are spin and valley quantum numbers. Furthermore, σ ∈
{A, B} is the sublattice index, l is the unit cell index,
Ωcell is the unit cell area, r lσ = (x lσ, z lσ) is the position
of the carbon atom on sublattice σ in the lth unit cell, the
phase factors49 in the exponential are ϕ K , A = ϕ K ′ , B =
0, ϕ K ′ , A = η and ϕ K , B = η − π/3 with η being the
chiral angle of the CNT, and χ+ = (1, 0) and χ− = (0, 1)
are the two possible spin states with axial polarization.
The four smoothly varying envelope functions Ψ(v)

σ can
be obtained by solving the Dirac-like envelope function
equations49 for v ∈ (+,−):

[v F (σx px + vσy pz ) + Vconf(z)]




Ψ(v)

A

Ψ(v)
B



 = E




Ψ(v)

A

Ψ(v)
B



 .

(2)
Here σx and σy are Pauli matrices, corresponding to the

sublattice degree of freedom and Vconf(z) is a smooth con-
finement potential, e.g., induced by electrostatic gates.
Note that our choice of the coordinate system (see Fig.
2a) implies that pz (and not py ) appears in the envelope
Hamiltonian. The functions Ψ(v)

σ and ψv s are normalized:

1 =
∫ 2π R

0
dx

∫ ∞

−∞
dz

(
|Ψ(v)

A (r)|2 + |Ψ(v)
B (r)|2

)
,(3a)

1 =
∑

lσ

(ψv s)†lσ(ψv s) lσ, (3b)

where R is the radius of the nanotube.
Our goal is to set up a 4 × 4 effective Hamiltonian

describing the valley-mixing due to short-range disor-
der. Short-range disorder can be caused by any kind
of atomic faults of the crystalline structure: substi-
tutional or interstitial atoms, vacancies, adatoms, etc.
We take into account short-range disorder in the tight-
binding model as a static random on-site potential V i ,
i.e., (Hdis,TB) i , j = V i δ i j . [i = (lσ) is an index combining
the unit cell index l and the sublattice index σ.] With-
out the loss of generality we can assume that the disorder
potential has zero mean, 〈V i〉 = 0. The short-range im-
purites are typically charge neutral, and therefore the
interaction between them is weak. This suggests that
the random on-site potential is spatially uncorrelated,
〈V i V j 〉 = δ i j 〈V 2

i 〉. A further plausible assumption is that
the CNT is homogeneous. Motivated by these observa-
tions, we model the disorder potential on the different
sites as independent and identically distributed random
variables. Since we focus on valley effects, we neglect
possible sources of spin-dependent short-range disorder,
such as hyperfine interaction due to 13C atoms10 and
adatom-enhanced spin-orbit interaction50 for example.

To derive an effective 4 × 4 Hamiltonian describing
the effect of the short-range disorder we project the
tight-binding disorder Hamiltonian Hdis,TB onto the four-
dimensional subspace of interest. The corresponding pro-
jector is

P =
∑

v s

|ψv s〉〈ψv s |. (4)

The same method has been used recently by us to analyze
the effect of hyperfine interaction in carbon-based QDs.10
The obtained effective Hamiltonian is

Hdis,eff = PHdis,TBP

= (b0τ̃0 + bx τ̃x + by τ̃y + bz τ̃z )⊗ s0

≡ (b0τ̃0 + b · τ̃ )⊗ s0, (5)

where

bk = Ωcell

∑

lσ

V lσF (k)
lσ (6)

for k ∈ {0, x, y, z}. Here, F (0)
lσ =

∑
v |Ψ(v)

σ (r lσ)|2/2,
F (z)

lσ =
∑

v v|Ψ(v)
σ (r lσ)|2/2, and F (x / y)

lσ =

P =
∑

vs

|ψvs〉〈ψvs|
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Spin-valley blockade in carbon nanotube double quantum dots

András Pályi and Guido Burkard
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We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin

B

x

z

barrier barrier barrier

} }

dot L dot R

S D

ΓL ΓRt

FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in

∝ B

∆so !
b2
L − b2

R

∆so
! t
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t ! b2

−
∆ S O

,

where b2
− = b2

L − b2
R) where the current as the function

of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21 ,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case

t ∼ b2
−

∆ S O
. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆ S O
as

well, and in Appendix B we show that they do not hold

if t $ b2
−

∆ S O
.

We start our analysis by presenting the numerical re-
sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆S O
and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19 ,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21 ,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I(B = 0) and the maximal current Im a x is
Im a x/I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Im a x/I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Im a x/I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK , ψK   and ψK , ψK   [the pairs are energetically sep-
arated by the spin-orbit energy ∆S O at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑,K  ↑〉,
whereas the (0,2) states in the form |0,K ↑ K  ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆S O ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal ar-
rangement of the states reflects the charge configuration,
and the vertical arrangement reflects the spin-orbit en-
ergies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

t he typical energy scale of t he disorder-induced valley-
Zeeman-fields on t he two dots. T he main result of t his
sect ion is t hat we ident ify a parameter regime (t ! b2−

∆SO
,

where b2− = b2L − b2R) where t he current as t he funct ion
of magnet ic field ( the ‘magnetot ranspor t curve’) shows a
dip around zero field, and t he wid t h of t he dip is cont rol-
lable by t he interdot t unneling amplit ude t. T his field-
induced increase of t he current is in qualit at ive agree-
ment wit h experiments.21,22 We interpret t his result us-
ing Lowdin per t urbat ion t heory ,57 and provide an ana-
ly t ical formula for t he current which can be well fit ted
to t he numerical results using a single fit t ing parameter,
t he average number of t ransmit ted elect rons between two
blocking events.58 In t he following we describe t he case
t ∼ b2−

∆SO
. In A ppendix A we argue t hat t he findings of

t his regime can be ex tended to the regime t # b2−
∆SO

as
well, and in A ppendix B we show t hat t hey do not hold
if t $ b2−

∆SO
.

We st ar t our analysis by present ing t he numerical re-
sults for t his regime. In F ig. 3 we show the current
as a funct ion of t he magnet ic-field-induced valley split-
t ing ∆v , for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
t ion), but different values of interdot t unneling t. A ll pa-
rameters have a realist ic order of magnitude.19,21 ( Note
t hat t he Zeeman spin split t ing ∆s plays no role in t he
t ranspor t process, see below.) In qualit at ive agreement
wit h recent experiments,21,22 t he dat a in F ig. 3 shows
a zero-field dip in t he current , and the width of t he
dip is cont rolled by t he interdot t unneling t. In all
t he t hree cases displayed, t he rat io of t he zero-field cur-
rent I0 ≡ I (B = 0) and t he maximal current Imax is
Imax/I0 ≈ 1.5. T his rat io agrees well wit h t hat observed
experiment ally in Ref. 21 (see F ig. 3a t herein), however,

in Ref. 22 a rat io of Imax/I0 ∼ 50 has been found (see F ig.
3e t herein). B elow we argue t hat the factor Imax/I0 ≈ 1.5
we deduce from F ig. 3 is a rough upper bound for t his
quant ity in the parameter regime under considerat ion,
and t herefore we conclude t hat our results (i) agree very
well wit h t he measurement of Ref. 21, and (ii) match t he
measurement of Ref. 22 only qualit at ively, which might
be due to mechanisms missing from our model or sample
parameters in t he experiment not fit t ing into t he param-
eter regime we consider here. Fur t her discussion on t his
discrepancy wit h Ref. 22 is provided in Sect ion V I . In
the remaining par t of t his sect ion we provide an inter-
pret at ion of t he numerical results shown in F ig. 3 and
derive an analy t ical formula for the current using Lowdin
per t urbat ion t heory.

T he t ransi t ion rates in the classical master equat ion
[ E q. (13)] are determined by t he eigenstates of t he two-
elect ron H amiltonian. To provide an interpret at ion of
the numerical results, we will describe those energy eigen-
st ates using per t urbat ion t heory. We st ar t wit h t he two-
elect ron Fock basis based on t he single-par t icle st ates
ψK↑ , ψK′↓ and ψK↓ , ψK′↑ [t he pairs are energet ically sep-
arated by t he spin-orbit energy ∆SO at zero field, see E q.
(9)]. T he (1,1) st ates are denoted in t he form |K ↑,K ′ ↑〉,
whereas t he (0,2) st ates in t he form |0,K ↑ K ′ ↑〉. We
perform a basis t ransformat ion in order to obt ain basis
st ates which are eigenst ates of the two-elect ron spin-orbit
H amiltonian [ E q. (10d)] and have well-defined supersin-
glet or super t riplet character at t he same t ime. T his new
basis is presented in Table I , classified according to t heir
proper t ies out lined below. T his basis will serve as t he set
of unper t urbed st ates in our per turbat ion calculat ions.

A n impor t ant simplifying observat ion is t hat even in
the presence of spin-orbit coupling and a magnet ic field
parallel to t he nanot ube axis, t he axial component of t he
elect ron spin Sz is conserved. T his allows us to separate
the 22 st ates of t he two-elect ron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 st ates which
are spin-polarized with a polarizat ion aligned wit h t he
z axis (up-spin st ates), 5 st ates which are spin-polarized
with a polarizat ion ant ialigned wit h t he z axis (down-
spin st ates), and 12 st ates having mixed spin st ates. A s
the t hree different spin subspaces shown in t he columns of
Table I are not coupled by any terms in t he H amiltonian,
the Zeeman spin split t ing ∆s plays no role in t he t rans-
por t process. B esides t heir spin st ate, our unper t urbed
st ates can also be classified according to t heir spin-orbit
energy. F ive-five of t hose have a spin-orbit energy ±∆SO ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize t he mat rix elements of t he H amiltonian,
in F ig. 4 we show t he level diagram of t he unper t urbed
basis st ates we int roduced in Table I . T he horizont al ar-
rangement of t he st ates reflects the charge configurat ion,
and t he ver t ical arrangement reflects t he spin-orbit en-
ergies. Red lines denote super t riplet st ates and black
lines denote supersinglet st ates. T he green (blue) arrows
correspond to offdiagonal elements of t he H amiltonian in
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We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in

∝ B

∆so !
b2
L − b2

R

∆so
! t

(1) finite leakage current
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t ! b2

−
∆ S O

,

where b2
− = b2

L − b2
R) where the current as the function

of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21 ,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case

t ∼ b2
−

∆ S O
. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆ S O
as

well, and in Appendix B we show that they do not hold

if t $ b2
−

∆ S O
.

We start our analysis by presenting the numerical re-
sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆S O
and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19 ,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21 ,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I(B = 0) and the maximal current Im a x is
Im a x/I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Im a x/I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Im a x/I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK , ψK   and ψK , ψK   [the pairs are energetically sep-
arated by the spin-orbit energy ∆S O at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑,K  ↑〉,
whereas the (0,2) states in the form |0,K ↑ K  ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆S O ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal ar-
rangement of the states reflects the charge configuration,
and the vertical arrangement reflects the spin-orbit en-
ergies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

t he typical energy scale of t he disorder-induced valley-
Zeeman-fields on t he two dots. T he main result of t his
sect ion is t hat we ident ify a parameter regime (t ! b2−

∆SO
,

where b2− = b2L − b2R) where t he current as t he funct ion
of magnet ic field ( the ‘magnetot ranspor t curve’) shows a
dip around zero field, and t he wid t h of t he dip is cont rol-
lable by t he interdot t unneling amplit ude t. T his field-
induced increase of t he current is in qualit at ive agree-
ment wit h experiments.21,22 We interpret t his result us-
ing Lowdin per t urbat ion t heory ,57 and provide an ana-
ly t ical formula for t he current which can be well fit ted
to t he numerical results using a single fit t ing parameter,
t he average number of t ransmit ted elect rons between two
blocking events.58 In t he following we describe t he case
t ∼ b2−

∆SO
. In A ppendix A we argue t hat t he findings of

t his regime can be ex tended to the regime t # b2−
∆SO

as
well, and in A ppendix B we show t hat t hey do not hold
if t $ b2−

∆SO
.

We st ar t our analysis by present ing t he numerical re-
sults for t his regime. In F ig. 3 we show the current
as a funct ion of t he magnet ic-field-induced valley split-
t ing ∆v , for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
t ion), but different values of interdot t unneling t. A ll pa-
rameters have a realist ic order of magnitude.19,21 ( Note
t hat t he Zeeman spin split t ing ∆s plays no role in t he
t ranspor t process, see below.) In qualit at ive agreement
wit h recent experiments,21,22 t he dat a in F ig. 3 shows
a zero-field dip in t he current , and the width of t he
dip is cont rolled by t he interdot t unneling t. In all
t he t hree cases displayed, t he rat io of t he zero-field cur-
rent I0 ≡ I (B = 0) and t he maximal current Imax is
Imax/I0 ≈ 1.5. T his rat io agrees well wit h t hat observed
experiment ally in Ref. 21 (see F ig. 3a t herein), however,

in Ref. 22 a rat io of Imax/I0 ∼ 50 has been found (see F ig.
3e t herein). B elow we argue t hat the factor Imax/I0 ≈ 1.5
we deduce from F ig. 3 is a rough upper bound for t his
quant ity in the parameter regime under considerat ion,
and t herefore we conclude t hat our results (i) agree very
well wit h t he measurement of Ref. 21, and (ii) match t he
measurement of Ref. 22 only qualit at ively, which might
be due to mechanisms missing from our model or sample
parameters in t he experiment not fit t ing into t he param-
eter regime we consider here. Fur t her discussion on t his
discrepancy wit h Ref. 22 is provided in Sect ion V I . In
the remaining par t of t his sect ion we provide an inter-
pret at ion of t he numerical results shown in F ig. 3 and
derive an analy t ical formula for the current using Lowdin
per t urbat ion t heory.

T he t ransi t ion rates in the classical master equat ion
[ E q. (13)] are determined by t he eigenstates of t he two-
elect ron H amiltonian. To provide an interpret at ion of
the numerical results, we will describe those energy eigen-
st ates using per t urbat ion t heory. We st ar t wit h t he two-
elect ron Fock basis based on t he single-par t icle st ates
ψK↑ , ψK′↓ and ψK↓ , ψK′↑ [t he pairs are energet ically sep-
arated by t he spin-orbit energy ∆SO at zero field, see E q.
(9)]. T he (1,1) st ates are denoted in t he form |K ↑,K ′ ↑〉,
whereas t he (0,2) st ates in t he form |0,K ↑ K ′ ↑〉. We
perform a basis t ransformat ion in order to obt ain basis
st ates which are eigenst ates of the two-elect ron spin-orbit
H amiltonian [ E q. (10d)] and have well-defined supersin-
glet or super t riplet character at t he same t ime. T his new
basis is presented in Table I , classified according to t heir
proper t ies out lined below. T his basis will serve as t he set
of unper t urbed st ates in our per turbat ion calculat ions.

A n impor t ant simplifying observat ion is t hat even in
the presence of spin-orbit coupling and a magnet ic field
parallel to t he nanot ube axis, t he axial component of t he
elect ron spin Sz is conserved. T his allows us to separate
the 22 st ates of t he two-elect ron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 st ates which
are spin-polarized with a polarizat ion aligned wit h t he
z axis (up-spin st ates), 5 st ates which are spin-polarized
with a polarizat ion ant ialigned wit h t he z axis (down-
spin st ates), and 12 st ates having mixed spin st ates. A s
the t hree different spin subspaces shown in t he columns of
Table I are not coupled by any terms in t he H amiltonian,
the Zeeman spin split t ing ∆s plays no role in t he t rans-
por t process. B esides t heir spin st ate, our unper t urbed
st ates can also be classified according to t heir spin-orbit
energy. F ive-five of t hose have a spin-orbit energy ±∆SO ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize t he mat rix elements of t he H amiltonian,
in F ig. 4 we show t he level diagram of t he unper t urbed
basis st ates we int roduced in Table I . T he horizont al ar-
rangement of t he st ates reflects the charge configurat ion,
and t he ver t ical arrangement reflects t he spin-orbit en-
ergies. Red lines denote super t riplet st ates and black
lines denote supersinglet st ates. T he green (blue) arrows
correspond to offdiagonal elements of t he H amiltonian in
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We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.
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I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in

∝ B

∆so !
b2
L − b2

R

∆so
! t

(2) zero-field dip
(1) finite leakage current
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t ! b2

−
∆ S O

,

where b2
− = b2

L − b2
R) where the current as the function

of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21 ,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case

t ∼ b2
−

∆ S O
. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆ S O
as

well, and in Appendix B we show that they do not hold

if t $ b2
−

∆ S O
.

We start our analysis by presenting the numerical re-
sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆S O
and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19 ,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21 ,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I(B = 0) and the maximal current Im a x is
Im a x/I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Im a x/I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Im a x/I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK , ψK   and ψK , ψK   [the pairs are energetically sep-
arated by the spin-orbit energy ∆S O at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑,K  ↑〉,
whereas the (0,2) states in the form |0,K ↑ K  ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆S O ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal ar-
rangement of the states reflects the charge configuration,
and the vertical arrangement reflects the spin-orbit en-
ergies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

t he typical energy scale of t he disorder-induced valley-
Zeeman-fields on t he two dots. T he main result of t his
sect ion is t hat we ident ify a parameter regime (t ! b2−

∆SO
,

where b2− = b2L − b2R) where t he current as t he funct ion
of magnet ic field ( the ‘magnetot ranspor t curve’) shows a
dip around zero field, and t he wid t h of t he dip is cont rol-
lable by t he interdot t unneling amplit ude t. T his field-
induced increase of t he current is in qualit at ive agree-
ment wit h experiments.21,22 We interpret t his result us-
ing Lowdin per t urbat ion t heory ,57 and provide an ana-
ly t ical formula for t he current which can be well fit ted
to t he numerical results using a single fit t ing parameter,
t he average number of t ransmit ted elect rons between two
blocking events.58 In t he following we describe t he case
t ∼ b2−

∆SO
. In A ppendix A we argue t hat t he findings of

t his regime can be ex tended to the regime t # b2−
∆SO

as
well, and in A ppendix B we show t hat t hey do not hold
if t $ b2−

∆SO
.

We st ar t our analysis by present ing t he numerical re-
sults for t his regime. In F ig. 3 we show the current
as a funct ion of t he magnet ic-field-induced valley split-
t ing ∆v , for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
t ion), but different values of interdot t unneling t. A ll pa-
rameters have a realist ic order of magnitude.19,21 ( Note
t hat t he Zeeman spin split t ing ∆s plays no role in t he
t ranspor t process, see below.) In qualit at ive agreement
wit h recent experiments,21,22 t he dat a in F ig. 3 shows
a zero-field dip in t he current , and the width of t he
dip is cont rolled by t he interdot t unneling t. In all
t he t hree cases displayed, t he rat io of t he zero-field cur-
rent I0 ≡ I (B = 0) and t he maximal current Imax is
Imax/I0 ≈ 1.5. T his rat io agrees well wit h t hat observed
experiment ally in Ref. 21 (see F ig. 3a t herein), however,

in Ref. 22 a rat io of Imax/I0 ∼ 50 has been found (see F ig.
3e t herein). B elow we argue t hat the factor Imax/I0 ≈ 1.5
we deduce from F ig. 3 is a rough upper bound for t his
quant ity in the parameter regime under considerat ion,
and t herefore we conclude t hat our results (i) agree very
well wit h t he measurement of Ref. 21, and (ii) match t he
measurement of Ref. 22 only qualit at ively, which might
be due to mechanisms missing from our model or sample
parameters in t he experiment not fit t ing into t he param-
eter regime we consider here. Fur t her discussion on t his
discrepancy wit h Ref. 22 is provided in Sect ion V I . In
the remaining par t of t his sect ion we provide an inter-
pret at ion of t he numerical results shown in F ig. 3 and
derive an analy t ical formula for the current using Lowdin
per t urbat ion t heory.

T he t ransi t ion rates in the classical master equat ion
[ E q. (13)] are determined by t he eigenstates of t he two-
elect ron H amiltonian. To provide an interpret at ion of
the numerical results, we will describe those energy eigen-
st ates using per t urbat ion t heory. We st ar t wit h t he two-
elect ron Fock basis based on t he single-par t icle st ates
ψK↑ , ψK′↓ and ψK↓ , ψK′↑ [t he pairs are energet ically sep-
arated by t he spin-orbit energy ∆SO at zero field, see E q.
(9)]. T he (1,1) st ates are denoted in t he form |K ↑,K ′ ↑〉,
whereas t he (0,2) st ates in t he form |0,K ↑ K ′ ↑〉. We
perform a basis t ransformat ion in order to obt ain basis
st ates which are eigenst ates of the two-elect ron spin-orbit
H amiltonian [ E q. (10d)] and have well-defined supersin-
glet or super t riplet character at t he same t ime. T his new
basis is presented in Table I , classified according to t heir
proper t ies out lined below. T his basis will serve as t he set
of unper t urbed st ates in our per turbat ion calculat ions.

A n impor t ant simplifying observat ion is t hat even in
the presence of spin-orbit coupling and a magnet ic field
parallel to t he nanot ube axis, t he axial component of t he
elect ron spin Sz is conserved. T his allows us to separate
the 22 st ates of t he two-elect ron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 st ates which
are spin-polarized with a polarizat ion aligned wit h t he
z axis (up-spin st ates), 5 st ates which are spin-polarized
with a polarizat ion ant ialigned wit h t he z axis (down-
spin st ates), and 12 st ates having mixed spin st ates. A s
the t hree different spin subspaces shown in t he columns of
Table I are not coupled by any terms in t he H amiltonian,
the Zeeman spin split t ing ∆s plays no role in t he t rans-
por t process. B esides t heir spin st ate, our unper t urbed
st ates can also be classified according to t heir spin-orbit
energy. F ive-five of t hose have a spin-orbit energy ±∆SO ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize t he mat rix elements of t he H amiltonian,
in F ig. 4 we show t he level diagram of t he unper t urbed
basis st ates we int roduced in Table I . T he horizont al ar-
rangement of t he st ates reflects the charge configurat ion,
and t he ver t ical arrangement reflects t he spin-orbit en-
ergies. Red lines denote super t riplet st ates and black
lines denote supersinglet st ates. T he green (blue) arrows
correspond to offdiagonal elements of t he H amiltonian in
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András Pályi and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: May 15, 2010)

We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t ! b2

−
∆ S O

,

where b2
− = b2

L − b2
R) where the current as the function

of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21 ,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case

t ∼ b2
−

∆ S O
. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆ S O
as

well, and in Appendix B we show that they do not hold

if t $ b2
−

∆ S O
.

We start our analysis by presenting the numerical re-
sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆S O
and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19 ,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21 ,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I(B = 0) and the maximal current Im a x is
Im a x/I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Im a x/I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Im a x/I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK , ψK   and ψK , ψK   [the pairs are energetically sep-
arated by the spin-orbit energy ∆S O at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑,K  ↑〉,
whereas the (0,2) states in the form |0,K ↑ K  ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆S O ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal ar-
rangement of the states reflects the charge configuration,
and the vertical arrangement reflects the spin-orbit en-
ergies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

t he typical energy scale of t he disorder-induced valley-
Zeeman-fields on t he two dots. T he main result of t his
sect ion is t hat we ident ify a parameter regime (t ! b2−

∆SO
,

where b2− = b2L − b2R) where t he current as t he funct ion
of magnet ic field ( the ‘magnetot ranspor t curve’) shows a
dip around zero field, and t he wid t h of t he dip is cont rol-
lable by t he interdot t unneling amplit ude t. T his field-
induced increase of t he current is in qualit at ive agree-
ment wit h experiments.21,22 We interpret t his result us-
ing Lowdin per t urbat ion t heory ,57 and provide an ana-
ly t ical formula for t he current which can be well fit ted
to t he numerical results using a single fit t ing parameter,
t he average number of t ransmit ted elect rons between two
blocking events.58 In t he following we describe t he case
t ∼ b2−

∆SO
. In A ppendix A we argue t hat t he findings of

t his regime can be ex tended to the regime t # b2−
∆SO

as
well, and in A ppendix B we show t hat t hey do not hold
if t $ b2−

∆SO
.

We st ar t our analysis by present ing t he numerical re-
sults for t his regime. In F ig. 3 we show the current
as a funct ion of t he magnet ic-field-induced valley split-
t ing ∆v , for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
t ion), but different values of interdot t unneling t. A ll pa-
rameters have a realist ic order of magnitude.19,21 ( Note
t hat t he Zeeman spin split t ing ∆s plays no role in t he
t ranspor t process, see below.) In qualit at ive agreement
wit h recent experiments,21,22 t he dat a in F ig. 3 shows
a zero-field dip in t he current , and the width of t he
dip is cont rolled by t he interdot t unneling t. In all
t he t hree cases displayed, t he rat io of t he zero-field cur-
rent I0 ≡ I (B = 0) and t he maximal current Imax is
Imax/I0 ≈ 1.5. T his rat io agrees well wit h t hat observed
experiment ally in Ref. 21 (see F ig. 3a t herein), however,

in Ref. 22 a rat io of Imax/I0 ∼ 50 has been found (see F ig.
3e t herein). B elow we argue t hat the factor Imax/I0 ≈ 1.5
we deduce from F ig. 3 is a rough upper bound for t his
quant ity in the parameter regime under considerat ion,
and t herefore we conclude t hat our results (i) agree very
well wit h t he measurement of Ref. 21, and (ii) match t he
measurement of Ref. 22 only qualit at ively, which might
be due to mechanisms missing from our model or sample
parameters in t he experiment not fit t ing into t he param-
eter regime we consider here. Fur t her discussion on t his
discrepancy wit h Ref. 22 is provided in Sect ion V I . In
the remaining par t of t his sect ion we provide an inter-
pret at ion of t he numerical results shown in F ig. 3 and
derive an analy t ical formula for the current using Lowdin
per t urbat ion t heory.

T he t ransi t ion rates in the classical master equat ion
[ E q. (13)] are determined by t he eigenstates of t he two-
elect ron H amiltonian. To provide an interpret at ion of
the numerical results, we will describe those energy eigen-
st ates using per t urbat ion t heory. We st ar t wit h t he two-
elect ron Fock basis based on t he single-par t icle st ates
ψK↑ , ψK′↓ and ψK↓ , ψK′↑ [t he pairs are energet ically sep-
arated by t he spin-orbit energy ∆SO at zero field, see E q.
(9)]. T he (1,1) st ates are denoted in t he form |K ↑,K ′ ↑〉,
whereas t he (0,2) st ates in t he form |0,K ↑ K ′ ↑〉. We
perform a basis t ransformat ion in order to obt ain basis
st ates which are eigenst ates of the two-elect ron spin-orbit
H amiltonian [ E q. (10d)] and have well-defined supersin-
glet or super t riplet character at t he same t ime. T his new
basis is presented in Table I , classified according to t heir
proper t ies out lined below. T his basis will serve as t he set
of unper t urbed st ates in our per turbat ion calculat ions.

A n impor t ant simplifying observat ion is t hat even in
the presence of spin-orbit coupling and a magnet ic field
parallel to t he nanot ube axis, t he axial component of t he
elect ron spin Sz is conserved. T his allows us to separate
the 22 st ates of t he two-elect ron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 st ates which
are spin-polarized with a polarizat ion aligned wit h t he
z axis (up-spin st ates), 5 st ates which are spin-polarized
with a polarizat ion ant ialigned wit h t he z axis (down-
spin st ates), and 12 st ates having mixed spin st ates. A s
the t hree different spin subspaces shown in t he columns of
Table I are not coupled by any terms in t he H amiltonian,
the Zeeman spin split t ing ∆s plays no role in t he t rans-
por t process. B esides t heir spin st ate, our unper t urbed
st ates can also be classified according to t heir spin-orbit
energy. F ive-five of t hose have a spin-orbit energy ±∆SO ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize t he mat rix elements of t he H amiltonian,
in F ig. 4 we show t he level diagram of t he unper t urbed
basis st ates we int roduced in Table I . T he horizont al ar-
rangement of t he st ates reflects the charge configurat ion,
and t he ver t ical arrangement reflects t he spin-orbit en-
ergies. Red lines denote super t riplet st ates and black
lines denote supersinglet st ates. T he green (blue) arrows
correspond to offdiagonal elements of t he H amiltonian in
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András Pályi and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: May 15, 2010)

We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in
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(3) dip width controlled by t
Imax
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≈ 1.5(4)

(1) finite leakage current
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, bLx = 20µeV, bLy = 10µeV, bRx = 80µeV,
bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n∗ as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t ! b2

−
∆ S O

,

where b2
− = b2

L − b2
R) where the current as the function

of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21 ,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case

t ∼ b2
−

∆ S O
. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆ S O
as

well, and in Appendix B we show that they do not hold

if t $ b2
−

∆ S O
.

We start our analysis by presenting the numerical re-
sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆S O
and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19 ,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21 ,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I(B = 0) and the maximal current Im a x is
Im a x/I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Im a x/I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Im a x/I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK , ψK   and ψK , ψK   [the pairs are energetically sep-
arated by the spin-orbit energy ∆S O at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑,K  ↑〉,
whereas the (0,2) states in the form |0,K ↑ K  ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆S O ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal ar-
rangement of the states reflects the charge configuration,
and the vertical arrangement reflects the spin-orbit en-
ergies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
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bRy = 0µeV, and therefore b2−/∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
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t he typical energy scale of t he disorder-induced valley-
Zeeman-fields on t he two dots. T he main result of t his
sect ion is t hat we ident ify a parameter regime (t ! b2−

∆SO
,

where b2− = b2L − b2R) where t he current as t he funct ion
of magnet ic field ( the ‘magnetot ranspor t curve’) shows a
dip around zero field, and t he wid t h of t he dip is cont rol-
lable by t he interdot t unneling amplit ude t. T his field-
induced increase of t he current is in qualit at ive agree-
ment wit h experiments.21,22 We interpret t his result us-
ing Lowdin per t urbat ion t heory ,57 and provide an ana-
ly t ical formula for t he current which can be well fit ted
to t he numerical results using a single fit t ing parameter,
t he average number of t ransmit ted elect rons between two
blocking events.58 In t he following we describe t he case
t ∼ b2−

∆SO
. In A ppendix A we argue t hat t he findings of

t his regime can be ex tended to the regime t # b2−
∆SO

as
well, and in A ppendix B we show t hat t hey do not hold
if t $ b2−

∆SO
.

We st ar t our analysis by present ing t he numerical re-
sults for t his regime. In F ig. 3 we show the current
as a funct ion of t he magnet ic-field-induced valley split-
t ing ∆v , for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
t ion), but different values of interdot t unneling t. A ll pa-
rameters have a realist ic order of magnitude.19,21 ( Note
t hat t he Zeeman spin split t ing ∆s plays no role in t he
t ranspor t process, see below.) In qualit at ive agreement
wit h recent experiments,21,22 t he dat a in F ig. 3 shows
a zero-field dip in t he current , and the width of t he
dip is cont rolled by t he interdot t unneling t. In all
t he t hree cases displayed, t he rat io of t he zero-field cur-
rent I0 ≡ I (B = 0) and t he maximal current Imax is
Imax/I0 ≈ 1.5. T his rat io agrees well wit h t hat observed
experiment ally in Ref. 21 (see F ig. 3a t herein), however,

in Ref. 22 a rat io of Imax/I0 ∼ 50 has been found (see F ig.
3e t herein). B elow we argue t hat the factor Imax/I0 ≈ 1.5
we deduce from F ig. 3 is a rough upper bound for t his
quant ity in the parameter regime under considerat ion,
and t herefore we conclude t hat our results (i) agree very
well wit h t he measurement of Ref. 21, and (ii) match t he
measurement of Ref. 22 only qualit at ively, which might
be due to mechanisms missing from our model or sample
parameters in t he experiment not fit t ing into t he param-
eter regime we consider here. Fur t her discussion on t his
discrepancy wit h Ref. 22 is provided in Sect ion V I . In
the remaining par t of t his sect ion we provide an inter-
pret at ion of t he numerical results shown in F ig. 3 and
derive an analy t ical formula for the current using Lowdin
per t urbat ion t heory.

T he t ransi t ion rates in the classical master equat ion
[ E q. (13)] are determined by t he eigenstates of t he two-
elect ron H amiltonian. To provide an interpret at ion of
the numerical results, we will describe those energy eigen-
st ates using per t urbat ion t heory. We st ar t wit h t he two-
elect ron Fock basis based on t he single-par t icle st ates
ψK↑ , ψK′↓ and ψK↓ , ψK′↑ [t he pairs are energet ically sep-
arated by t he spin-orbit energy ∆SO at zero field, see E q.
(9)]. T he (1,1) st ates are denoted in t he form |K ↑,K ′ ↑〉,
whereas t he (0,2) st ates in t he form |0,K ↑ K ′ ↑〉. We
perform a basis t ransformat ion in order to obt ain basis
st ates which are eigenst ates of the two-elect ron spin-orbit
H amiltonian [ E q. (10d)] and have well-defined supersin-
glet or super t riplet character at t he same t ime. T his new
basis is presented in Table I , classified according to t heir
proper t ies out lined below. T his basis will serve as t he set
of unper t urbed st ates in our per turbat ion calculat ions.

A n impor t ant simplifying observat ion is t hat even in
the presence of spin-orbit coupling and a magnet ic field
parallel to t he nanot ube axis, t he axial component of t he
elect ron spin Sz is conserved. T his allows us to separate
the 22 st ates of t he two-elect ron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 st ates which
are spin-polarized with a polarizat ion aligned wit h t he
z axis (up-spin st ates), 5 st ates which are spin-polarized
with a polarizat ion ant ialigned wit h t he z axis (down-
spin st ates), and 12 st ates having mixed spin st ates. A s
the t hree different spin subspaces shown in t he columns of
Table I are not coupled by any terms in t he H amiltonian,
the Zeeman spin split t ing ∆s plays no role in t he t rans-
por t process. B esides t heir spin st ate, our unper t urbed
st ates can also be classified according to t heir spin-orbit
energy. F ive-five of t hose have a spin-orbit energy ±∆SO ,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize t he mat rix elements of t he H amiltonian,
in F ig. 4 we show t he level diagram of t he unper t urbed
basis st ates we int roduced in Table I . T he horizont al ar-
rangement of t he st ates reflects the charge configurat ion,
and t he ver t ical arrangement reflects t he spin-orbit en-
ergies. Red lines denote super t riplet st ates and black
lines denote supersinglet st ates. T he green (blue) arrows
correspond to offdiagonal elements of t he H amiltonian in



counterclockwise (K0) isospin state at small B and then
changes to a clockwise (K) isospin at B! 250 mT. The
energy to add the third electron does the opposite. Fits to
the low field slopes for the second and third electron addi-
tion energies yield moments of 390 and "270 !eV=T,
respectively, with a difference in magnitudes within 10%
of 2!B, a signature of a spin-orbit-dominated spectrum
[13]. Thus we infer an orbital moment!orb ¼ 330 !eV=T
and a zero-field spin-orbit splitting !SO ¼ 170 !eV.

A consequence of the spectrum in Fig. 3(d) is a predicted
[15] minimum in T1 as the two K

0 states with opposite spin
approach one another at Bspin ¼ !SO=g!B, which for this

nanotube occurs at 1.4 T [cf. Fig. 3(d)]. The expected
coupling of these two states is via 1D bending-mode

phonons with quadratic dispersion, leading to a T1 /
ffiffiffiffi
!

p

dependence on the energy splitting ! due to the density-
of-states singularity at zero energy in 1D [15]. This is in
contrast to higher dimensions, where T1 diverges as! ! 0
[15,27,29].
Values for T1, extracted from fits as in Fig. 3(b), are

shown in Fig. 3(e), where a minimum in T1 is observed at
the predicted value B! 1:4 T. Also shown in Fig. 3(e) is a

fit of the form T1 ¼ C
ffiffiffiffiffiffi
!"

p
, where the splitting !" ¼

g!B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB cos""!SO=g!BÞ2 þ ðB sin"Þ2

p
is anticrossed,

accounting for a misalignment angle " between the nano-
tube axis and the direction of the applied field [30].
For these fits, we use g ¼ 2 and the measured quantities
!SO and " (5' determined by the electron micrograph); the
only free parameter is an overall scale for T1, C ¼
65 ns=

ffiffiffiffiffiffiffiffiffiffi
!eV

p
, only a factor of !5 smaller than the esti-

mates in Ref. [15]. Attributing the measured T1 minimum
to this mechanism requires loading a two-electron state
involving at least one of the two higher states of Fig. 3(d) at
step R, which is expected because the levels of the left
dot are well below the electrochemical potential of the
left lead at R. We note that hyperfine relaxation should
also be strongest near a degeneracy [25], but the ratio
!"=ðg!BBnucÞ ! 20 (Ref. [16]) would require huge inelas-
tic tunnel rates ruled out by transport measurements to
explain the measured T1.
We do not observe signatures of hyperfine-mediated

relaxation near B ¼ 0 [31], but note that a difference in
effective magnetic fields between the two dots should
induce dephasing of prepared two-particle spin and isospin
states. To measure the inhomogeneous dephasing time T(

2
of a state atB ¼ 0, a pulse cycle [Fig. 4(a)] first prepares an
ð0; 2Þ state at P, then separates the electrons via P0 into
ð1; 1Þ at S for a time #s, and finally measures the return
probability to ð0; 2Þ at M [3]. For small #s, the prepared
state always returns to ð0; 2Þ. For #s * T(

2 , a fraction of
prepared states evolves into blocked states, reducing the
return probability within the pulse triangle [Fig. 4(a)].
The dephasing time is obtained from the value of gs in

the center of the pulse triangle versus #s, which reflects the
probability of return to ð0; 2Þ when calibrated against the
equilibrium ð1; 1Þ and ð0; 2Þ values of gs [Fig. 4(b)]. A
likely source of dephasing is the hyperfine interaction.
Assuming a difference in Overhauser fields acting on the
two electrons of root mean square strength $Bjj

nuc parallel
to the nanotube axis [5,32], the decay is fit to a Gaussian
form, giving T(

2 ¼ @=g!B$B
jj
nuc ¼ 3:2 ns. The corre-

sponding $Bjj
nuc ¼ 1:8 mT is a factor of 2 smaller than

our estimate of the single dot nuclear field Bnuc in 13C
nanotubes [33]. The difference may be due to anisotropic
dipolar hyperfine coupling [34] or to accidental suppres-

sion of $Bjj
nuc [5]. Future work on 12C nanotubes will allow

dephasing mechanisms other than the hyperfine interaction
to be investigated.
Finally, we note that the saturation value of the return

probability in Fig. 4(c) is 0.17, smaller than the value of
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FIG. 3 (color online). (a) Leakage current through blockade
near zero detuning for small B, V12 ¼ "2 mV. (b) Decay of
pulse-triangle visibility I as a function of #M measured in the
center of the triangle at several values of B. (c) dgs=dVL as a
function of VL and B, showing the dependence of ground state
energies on B for the first four electrons on the left dot.
(d) Energy level diagram of the lowest states of a nanotube
with spin-orbit coupling; !SO ¼ 170 !eV, !KK0 ¼ 25 !eV,
" ¼ 5', and !orb ¼ 330 !eV=T. Arrows indicate the spin com-
ponent parallel to the nanotube axis. Schematics (right) indicate
orbital magnetic moment !orb for clockwise (K) and counter-
clockwise (K0) moving isospin states. At Borb (Bspin), the orbital

(Zeeman) shifts compensate !SO and states with opposite iso-
spin (spin) anticross. (e) T1 extracted as in (b) for B between 1.1
and 2 T. Error bars: Standard deviation of the fit parameter T1.
One-parameter fit (red curve) to theory of Ref. [15], modified for
B misaligned by 5' (see text).

PRL 102, 166802 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

24 APRIL 2009

166802-3

experiment #1
Churchill et al., PRL 2009

Imax

I0
≈ 1.5

agrees 
with theory

experiment #2
Churchill et al., Nature Phys. 2009

LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS1247

1.4

0D
et

un
in

g 
(m

eV
)

D
et

un
in

g 
(m

eV
)

6

4

2

0
–50 0 50

¬50 0 50

80

40

0
¬50 0 50

80

40

0

20

10

0

20

10

0

B|| (mT)

a

e f

d

b

c

50

25

0
¬50 0 50

B||   (mT) B||   (mT)

¬2.795

¬2.775

3.9603.880¬0.140 ¬0.80
VL (V) VL (V)

13C

B||  = 50 mTB||  = 0 

12C

B|| (mT)

0.7

0

ldd  (pA
)

ldd  (pA
)

ldd  (pA
)

ldd  (pA
)

l d
d 

(p
A

)

l d
d 

(p
A

)

1.084

1.074

V
R 

(V
)

V
R 

(V
)

Figure 3 | Contrasting magnetic field dependence of leakage current for 12C and 13C devices. a,b, Leakage current through spin blockade (colour scale)
as a function of detuning and magnetic field, B‖, for 12C (a) and 13C (b) devices. The vertical axes in a and b are interdot detuning as indicated by the
orange lines in c and d, respectively. In a, B‖ was swept and detuning stepped, whereas in b, detuning was swept and B‖ stepped. c,d, Current through the
double dot for a 12C device (bias= −1.5mV) and a 13C device (bias= −4mV), respectively. e,f, Cuts along B‖ at the detunings indicated by the black lines
in a and b, respectively. The fit in e is a Lorentzian with a width of 30mT, and the fit in f is to the theory of Jouravlev and Nazarov22, providing a measure of
Bnuc =6.1mT.

interpretation that it is governed by Bnuc rather than t . Assuming
Gaussian-distributed Overhauser fields and uniform coupling, Bnuc
is related to the hyperfine coupling constantA by gµBBnuc =A/

√
N ,

where g is the electron g -factor and N is the number of 13C nuclei
in each dot22. TakingN ∼3–10×104 and g =2 (see Supplementary
Information), yields A∼ 1–2×10−4 eV, a value that is two orders
of magnitude larger than predicted for carbon nanotubes8 or
measured in fullerenes9.

Signatures of dynamic nuclear polarization provide further
evidence of a strong hyperfine interaction in 13C double dots.
Hysteresis in the spin-blockade leakage current near zero detuning

is observed when the magnetic field is swept over a tesla-scale
range, as shown in Fig. 4a. The data in Fig. 4a,b are from the
same 13C device as in Fig. 3, but with the barriers tuned such
that cotunnelling processes provide a significant contribution to
the leakage current.

We interpret the hysteresis in Fig. 4a as resulting from a net
nuclear polarization induced by the electron spin flips required
to circumvent spin blockade26. We speculate that this nuclear
polarization generates an Overhauser field felt by the electron
spins that opposes B‖ once B‖ passes through zero. The value
of the coercive field, Bc ∼ 0.6 T, the external field at which
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double dot for a 12C device (bias= −1.5mV) and a 13C device (bias= −4mV), respectively. e,f, Cuts along B‖ at the detunings indicated by the black lines
in a and b, respectively. The fit in e is a Lorentzian with a width of 30mT, and the fit in f is to the theory of Jouravlev and Nazarov22, providing a measure of
Bnuc =6.1mT.

interpretation that it is governed by Bnuc rather than t . Assuming
Gaussian-distributed Overhauser fields and uniform coupling, Bnuc
is related to the hyperfine coupling constantA by gµBBnuc =A/

√
N ,

where g is the electron g -factor and N is the number of 13C nuclei
in each dot22. TakingN ∼3–10×104 and g =2 (see Supplementary
Information), yields A∼ 1–2×10−4 eV, a value that is two orders
of magnitude larger than predicted for carbon nanotubes8 or
measured in fullerenes9.

Signatures of dynamic nuclear polarization provide further
evidence of a strong hyperfine interaction in 13C double dots.
Hysteresis in the spin-blockade leakage current near zero detuning

is observed when the magnetic field is swept over a tesla-scale
range, as shown in Fig. 4a. The data in Fig. 4a,b are from the
same 13C device as in Fig. 3, but with the barriers tuned such
that cotunnelling processes provide a significant contribution to
the leakage current.

We interpret the hysteresis in Fig. 4a as resulting from a net
nuclear polarization induced by the electron spin flips required
to circumvent spin blockade26. We speculate that this nuclear
polarization generates an Overhauser field felt by the electron
spins that opposes B‖ once B‖ passes through zero. The value
of the coercive field, Bc ∼ 0.6 T, the external field at which
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in

Imax

I0
≈ 1.5

∝ B
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 

a b c dMagnetic field

Electric
field

+

Electron
spin
Electron
spin

Electron
spin
Electron
spin

Nuclear spins

Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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4

direction of the magnetic field (SL + SR) · B/B, the to-

tal valley operator (τ L + τ R)2/4 and the z-component

of the valley operator (τz,L + τz,R)/2. The correspond-

ing quantum numbers are s ∈ {0, 1}, ms ∈ {−s, . . . , s},

v ∈ {0, 1} and mv ∈ {−v, . . . , v}. We denote these

basis states with |s,ms, v,mv〉. These are eigenstates of

the system Hamiltonian in the absence of HFI. The com-

bined spin-valley wave functions of the ten states fulfilling

s = v are supertriplets, therefore these states cannot be

squeezed into a (0,2) charge configuration. In contrast, the

spin-valley wave functions of the six states with s $= v are

supersinglets, hence their transition to (0,2) is allowed.

The energy diagram of the 16 states of the (1,1)

charge configuration, corresponding to the three high-

lighted points of Fig. 1 are presented in Fig. 3. Figure

3a shows the situation where ∆s = ∆v = 0. In this case

there is a 16-fold degenerate level, and the HFI mixes su-

persinglet and supertriplet states effectively. This results

in a maximal current through the DQD. The Zeeman ef-

fect splits the states with different ms quantum numbers

(Fig. 3b) and suppresses hyperfine-induced hybridization

between them if ∆s > hhf , which leads to a decrease in

the leakage current. However, the valley mixing contribu-

tion of the HFI still induces strong mixing within the states

with the same ms. This mixing prevents the appearance of

‘pure’ supertriplet energy eigenstates which would block

the transport, therefore the current does not drop to zero.

As mentioned earlier, this behavior is in contrast to the case

of GaAs DQDs. Figure 3c shows the energy diagram when

both ∆s and ∆v are finite. If those are larger than the HFI,

then the four supertriplet states |1,±1, 1,±1〉 become de-

coupled from supersinglets. Thus the system gets trapped

whenever any of these four states is occupied during the

transport process, which results in a strong suppression of

the current. Note that only two blocked states remain if

∆s ≈ ∆v . In that case, |1, 1, 1,−1〉 and |1,−1, 1, 1〉 be-

come degenerate with the fourfold degenerate |s, 0, v, 0〉
and mix with those due to HFI, slightly enhancing the cur-

rent, visible along the diagonal |∆s| = |∆v| lines in Fig.

1.

Another characteristic of the spin-valley blockade is the

appearance of a dip in the green 〈I(∆v)〉 curve in Fig. 2

at ∆v = 0. Similar dip structures have been predicted

[30, 31] and measured [10, 20, 32] in conventional semi-

conductors and they were attributed to various microscopic

origins including cotunneling, spin-orbit interaction, and

exchange coupling. In our case, the dip has a different ori-

gin: it is due to the strong valley anisotropy of the HFI,

i.e., that in our above estimations h(z)
j vanishes and there-

fore Hhf does not include the τz operator.

Conclusions. We have established the form of the Hamil-

tonian describing the effect of HFI on a fourfold degener-

ate energy level in a carbon-based QD. We have found that

the short range nature of the HFI leads to a significant nu-

clear spin-electron valley coupling. We have calculated the
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FIG. 3: (Color online) Schematic energy diagrams of the

(1,1) charge configuration corresponding to the three highlighted

points of Fig. 1. The effect of hyperfine interaction is excluded.

Dashed lines: transport-blocking supertriplet states.

effect of this interaction on the leakage current through a

DQD in the Pauli blockade regime. Our findings may have

profound consequences for both spin and valley manipula-

tion in carbon-based QDs.
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v ∈ {0, 1} and mv ∈ {−v, . . . , v}. We denote these

basis states with |s,ms, v,mv〉. These are eigenstates of
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bined spin-valley wave functions of the ten states fulfilling

s = v are supertriplets, therefore these states cannot be
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conductors and they were attributed to various microscopic

origins including cotunneling, spin-orbit interaction, and

exchange coupling. In our case, the dip has a different ori-

gin: it is due to the strong valley anisotropy of the HFI,

i.e., that in our above estimations h(z)
j vanishes and there-

fore Hhf does not include the τz operator.

Conclusions. We have established the form of the Hamil-

tonian describing the effect of HFI on a fourfold degener-

ate energy level in a carbon-based QD. We have found that

the short range nature of the HFI leads to a significant nu-

clear spin-electron valley coupling. We have calculated the
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FIG. 3: (Color online) Schematic energy diagrams of the

(1,1) charge configuration corresponding to the three highlighted

points of Fig. 1. The effect of hyperfine interaction is excluded.

Dashed lines: transport-blocking supertriplet states.

effect of this interaction on the leakage current through a

DQD in the Pauli blockade regime. Our findings may have

profound consequences for both spin and valley manipula-

tion in carbon-based QDs.
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We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-

spin-valley blockade in carbon-
based double dots
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electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
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setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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ence is to use QDs dominantly consisting of nuclear-
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izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin

B

x

z

barrier barrier barrier

} }

dot L dot R

S D

ΓL ΓRt

FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
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plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
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in energy, then states sharing the same spin state be-
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in

counterclockwise (K0) isospin state at small B and then
changes to a clockwise (K) isospin at B! 250 mT. The
energy to add the third electron does the opposite. Fits to
the low field slopes for the second and third electron addi-
tion energies yield moments of 390 and "270 !eV=T,
respectively, with a difference in magnitudes within 10%
of 2!B, a signature of a spin-orbit-dominated spectrum
[13]. Thus we infer an orbital moment!orb ¼ 330 !eV=T
and a zero-field spin-orbit splitting !SO ¼ 170 !eV.

A consequence of the spectrum in Fig. 3(d) is a predicted
[15] minimum in T1 as the two K

0 states with opposite spin
approach one another at Bspin ¼ !SO=g!B, which for this

nanotube occurs at 1.4 T [cf. Fig. 3(d)]. The expected
coupling of these two states is via 1D bending-mode

phonons with quadratic dispersion, leading to a T1 /
ffiffiffiffi
!

p

dependence on the energy splitting ! due to the density-
of-states singularity at zero energy in 1D [15]. This is in
contrast to higher dimensions, where T1 diverges as! ! 0
[15,27,29].
Values for T1, extracted from fits as in Fig. 3(b), are

shown in Fig. 3(e), where a minimum in T1 is observed at
the predicted value B! 1:4 T. Also shown in Fig. 3(e) is a

fit of the form T1 ¼ C
ffiffiffiffiffiffi
!"

p
, where the splitting !" ¼

g!B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB cos""!SO=g!BÞ2 þ ðB sin"Þ2

p
is anticrossed,

accounting for a misalignment angle " between the nano-
tube axis and the direction of the applied field [30].
For these fits, we use g ¼ 2 and the measured quantities
!SO and " (5' determined by the electron micrograph); the
only free parameter is an overall scale for T1, C ¼
65 ns=

ffiffiffiffiffiffiffiffiffiffi
!eV

p
, only a factor of !5 smaller than the esti-

mates in Ref. [15]. Attributing the measured T1 minimum
to this mechanism requires loading a two-electron state
involving at least one of the two higher states of Fig. 3(d) at
step R, which is expected because the levels of the left
dot are well below the electrochemical potential of the
left lead at R. We note that hyperfine relaxation should
also be strongest near a degeneracy [25], but the ratio
!"=ðg!BBnucÞ ! 20 (Ref. [16]) would require huge inelas-
tic tunnel rates ruled out by transport measurements to
explain the measured T1.
We do not observe signatures of hyperfine-mediated

relaxation near B ¼ 0 [31], but note that a difference in
effective magnetic fields between the two dots should
induce dephasing of prepared two-particle spin and isospin
states. To measure the inhomogeneous dephasing time T(

2
of a state atB ¼ 0, a pulse cycle [Fig. 4(a)] first prepares an
ð0; 2Þ state at P, then separates the electrons via P0 into
ð1; 1Þ at S for a time #s, and finally measures the return
probability to ð0; 2Þ at M [3]. For small #s, the prepared
state always returns to ð0; 2Þ. For #s * T(

2 , a fraction of
prepared states evolves into blocked states, reducing the
return probability within the pulse triangle [Fig. 4(a)].
The dephasing time is obtained from the value of gs in

the center of the pulse triangle versus #s, which reflects the
probability of return to ð0; 2Þ when calibrated against the
equilibrium ð1; 1Þ and ð0; 2Þ values of gs [Fig. 4(b)]. A
likely source of dephasing is the hyperfine interaction.
Assuming a difference in Overhauser fields acting on the
two electrons of root mean square strength $Bjj

nuc parallel
to the nanotube axis [5,32], the decay is fit to a Gaussian
form, giving T(

2 ¼ @=g!B$B
jj
nuc ¼ 3:2 ns. The corre-

sponding $Bjj
nuc ¼ 1:8 mT is a factor of 2 smaller than

our estimate of the single dot nuclear field Bnuc in 13C
nanotubes [33]. The difference may be due to anisotropic
dipolar hyperfine coupling [34] or to accidental suppres-

sion of $Bjj
nuc [5]. Future work on 12C nanotubes will allow

dephasing mechanisms other than the hyperfine interaction
to be investigated.
Finally, we note that the saturation value of the return

probability in Fig. 4(c) is 0.17, smaller than the value of
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FIG. 3 (color online). (a) Leakage current through blockade
near zero detuning for small B, V12 ¼ "2 mV. (b) Decay of
pulse-triangle visibility I as a function of #M measured in the
center of the triangle at several values of B. (c) dgs=dVL as a
function of VL and B, showing the dependence of ground state
energies on B for the first four electrons on the left dot.
(d) Energy level diagram of the lowest states of a nanotube
with spin-orbit coupling; !SO ¼ 170 !eV, !KK0 ¼ 25 !eV,
" ¼ 5', and !orb ¼ 330 !eV=T. Arrows indicate the spin com-
ponent parallel to the nanotube axis. Schematics (right) indicate
orbital magnetic moment !orb for clockwise (K) and counter-
clockwise (K0) moving isospin states. At Borb (Bspin), the orbital

(Zeeman) shifts compensate !SO and states with opposite iso-
spin (spin) anticross. (e) T1 extracted as in (b) for B between 1.1
and 2 T. Error bars: Standard deviation of the fit parameter T1.
One-parameter fit (red curve) to theory of Ref. [15], modified for
B misaligned by 5' (see text).
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Spin-valley blockade in carbon nanotube double quantum dots

András Pályi and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: May 15, 2010)

We present a theoretical study of the Pauli or spin-valley blockade for double quantum dots in
semiconducting carbon nanotubes. In our model we take into account the following characteristic
features of carbon nanotubes: (i) fourfold (spin and valley) degeneracy of the quantum dot levels
(ii) the intrinsic spin-orbit interaction which is enhanced by the tube curvature, and (iii) valley-
mixing due to short-range disorder, i.e., substitutional atoms, adatoms, etc. We find that the spin-
valley blockade can be lifted in the presence of short-range disorder, which induces two independent
random (in magnitude and direction) valley-Zeeman-fields in the two dots, and hence acts similarly
to hyperfine interaction in conventional semiconductor quantum dots. In the case of strong spin-orbit
interaction, we identify a parameter regime where the current as the function of an applied axial
magnetic field shows a zero-field dip with a width controlled by the interdot tunneling amplitude,
in agreement with recent experiments.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 71.70.Ej

I. INTRODUCTION

Recent development of experimental techniques al-
low for preparation, manipulation and readout of few-
electron spin states in quantum dots (QDs),1 indicat-
ing the strong potential of these systems for future ap-
plication in quantum information processing.2 A major
factor limiting the performance of quantum dot spin
qubits in widely used III-V semiconductors (e.g., GaAs)
is spin decoherence due to hyperfine interaction with
nuclear spins. A strategy to suppress spin decoher-
ence is to use QDs dominantly consisting of nuclear-
spin-free isotopes of group IV materials. Carbon struc-
tures, such as carbon nanotubes (CNTs) or graphene,
are prime candidates for that purpose as the natu-
ral abundance of spin-carrying 13C nuclei is very small
(1%). This observation has motivated intensive theo-
retical investigation3–14 and the experimental realization
of QDs in carbon nanostructures.14–29 Further perspec-
tives of carbon-based quantum information processing
have been opened by proposals suggesting to utilize the
valley degree of freedom of the delocalized electrons as
a qubit,30,31 and to exploit the interplay of spin-orbit
interaction, valley-mixing and the bending of CNTs for
implementing qubit operations.32

The Pauli blockade or spin blockade effect1,33 in con-
ventional semiconductor double quantum dots (DQDs)
has provided a new probe of spin physics in these devices
and has been utilized in the past decade for various pur-
poses in the context of spin qubits. A basic application is
spin state initialization and readout in experiments real-
izing resonant manipulation of single spins.34–36 Pulsed-
gate techniques combined with the spin blockade setup
have been used37–39 in qubit manipulation experiments
where the information was encoded in the two-electron
spin states S and T0 or S and T+. Similar experiments
have been utilized to prepare the state of the nuclear spin
ensemble of the crystal lattice, with the aim of prolonging
the decoherence time of the qubit.40–42 Furthermore, spin
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FIG. 1: (color online) Schematic of the spin-valley blockade
setup with a carbon nanotube double quantum dot and an
external magnetic field B aligned with the tube axis. In this
regime electrons are transported from source (S) to drain (D)
while the DQD occupancy changes between single and double.
Spots represent electrons; the figure shows the (0,1) charge
configuration of the double dot. Lead-dot tunneling rates ΓL,
ΓR and interdot tunneling amplitude t are indicated.

blockade has been proven an efficient tool to gain infor-
mation about the mechanisms of spin relaxation and de-
coherence, and the corresponding energy scales. In par-
ticular, it has been applied to measure the energy scales
of hyperfine43,44 and spin-orbit interactions.45,46 The im-
plementation of this range of functionalities in carbon-
based quantum dots, potentially showing improved qubit
performance, is an intense ongoing effort.20–22,29

In this work we consider Pauli blockade in a trans-
port setup,1,33 where electrons are transmitted from the
source to the drain in a serially coupled DQD via the
(0, 1) → (1, 1) → (0, 2) → (0, 1) cycle (Fig. 1). Here
(nL, nR) denotes the charge state with nL (nR) elec-
trons in the left (right) QD. In conventional semicon-
ductor DQDs, if the (1,1) and (0,2) states are aligned
in energy, then states sharing the same spin state be-
come hybridized due to interdot tunneling. The only en-
ergetically available (0,2) state has a singlet spin state,
therefore it hybridizes with the (1,1) singlet only, leaving
the three (1,1) triplet states without a (0,2) component.
This implies that whenever a (1,1) triplet state is occu-
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FIG. 3: (color online) Numerical results for the current as a
function of magnetic-field-induced valley splitting for differ-
ent values of interdot tunneling (shown). Further parameters:
∆SO = 250µeV, b L x = 20µeV, b L y = 10µeV, bR x = 80µeV,
bR y = 0µeV, and therefore b2

− /∆SO = 23.6. Points: numer-
ical data. Curves: the analytical formula (23) fitted to the
numerical data with n  as the single fitting parameter. Lower
two data sets are scaled as shown.

the typical energy scale of the disorder-induced valley-
Zeeman-fields on the two dots. The main result of this
section is that we identify a parameter regime (t  b2

−
∆S O

,
where b2

− = b2
L − b2

R) where the current as the function
of magnetic field (the ‘magnetotransport curve’) shows a
dip around zero field, and the width of the dip is control-
lable by the interdot tunneling amplitude t. This field-
induced increase of the current is in qualitative agree-
ment with experiments.21,22 We interpret this result us-
ing Lowdin perturbation theory,57 and provide an ana-
lytical formula for the current which can be well fitted
to the numerical results using a single fitting parameter,
the average number of transmitted electrons between two
blocking events.58 In the following we describe the case
t ∼ b2

−
∆S O

. In Appendix A we argue that the findings of

this regime can be extended to the regime t # b2
−

∆S O
as

well, and in Appendix B we show that they do not hold
if t $ b2

−
∆S O

.
We start our analysis by presenting the numerical re-

sults for this regime. In Fig. 3 we show the current
as a function of the magnetic-field-induced valley split-
ting ∆v, for a fixed value of spin-orbit coupling ∆SO

and disorder-induced valley fields bL and bR (see cap-
tion), but different values of interdot tunneling t. All pa-
rameters have a realistic order of magnitude.19,21 (Note
that the Zeeman spin splitting ∆s plays no role in the
transport process, see below.) In qualitative agreement
with recent experiments,21,22 the data in Fig. 3 shows
a zero-field dip in the current, and the width of the
dip is controlled by the interdot tunneling t. In all
the three cases displayed, the ratio of the zero-field cur-
rent I0 ≡ I (B = 0) and the maximal current Imax is
Imax / I0 ≈ 1.5. This ratio agrees well with that observed
experimentally in Ref. 21 (see Fig. 3a therein), however,

in Ref. 22 a ratio of Imax / I0 ∼ 50 has been found (see Fig.
3e therein). Below we argue that the factor Imax / I0 ≈ 1.5
we deduce from Fig. 3 is a rough upper bound for this
quantity in the parameter regime under consideration,
and therefore we conclude that our results (i) agree very
well with the measurement of Ref. 21, and (ii) match the
measurement of Ref. 22 only qualitatively, which might
be due to mechanisms missing from our model or sample
parameters in the experiment not fitting into the param-
eter regime we consider here. Further discussion on this
discrepancy with Ref. 22 is provided in Section VI. In
the remaining part of this section we provide an inter-
pretation of the numerical results shown in Fig. 3 and
derive an analytical formula for the current using Lowdin
perturbation theory.

The transition rates in the classical master equation
[Eq. (13)] are determined by the eigenstates of the two-
electron Hamiltonian. To provide an interpretation of
the numerical results, we will describe those energy eigen-
states using perturbation theory. We start with the two-
electron Fock basis based on the single-particle states
ψK↑, ψK′↓ and ψK↓, ψK′↑ [the pairs are energetically sep-
arated by the spin-orbit energy ∆SO at zero field, see Eq.
(9)]. The (1,1) states are denoted in the form |K ↑, K ′ ↑〉,
whereas the (0,2) states in the form |0, K ↑ K ′ ↑〉. We
perform a basis transformation in order to obtain basis
states which are eigenstates of the two-electron spin-orbit
Hamiltonian [Eq. (10d)] and have well-defined supersin-
glet or supertriplet character at the same time. This new
basis is presented in Table I, classified according to their
properties outlined below. This basis will serve as the set
of unperturbed states in our perturbation calculations.

An important simplifying observation is that even in
the presence of spin-orbit coupling and a magnetic field
parallel to the nanotube axis, the axial component of the
electron spin Sz is conserved. This allows us to separate
the 22 states of the two-electron basis to three uncoupled
spin-subspaces (see columns in Table I): 5 states which
are spin-polarized with a polarization aligned with the
z axis (up-spin states), 5 states which are spin-polarized
with a polarization antialigned with the z axis (down-
spin states), and 12 states having mixed spin states. As
the three different spin subspaces shown in the columns of
Table I are not coupled by any terms in the Hamiltonian,
the Zeeman spin splitting ∆s plays no role in the trans-
port process. Besides their spin state, our unperturbed
states can also be classified according to their spin-orbit
energy. Five-five of those have a spin-orbit energy ±∆SO,
and twelve have a vanishing spin-orbit energy (see rows
in Table I).

To visualize the matrix elements of the Hamiltonian,
in Fig. 4 we show the level diagram of the unperturbed
basis states we introduced in Table I. The horizontal
arrangement of the states reflects the charge configura-
tion, and the vertical arrangement reflects the spin-orbit
energies. Red lines denote supertriplet states and black
lines denote supersinglet states. The green (blue) arrows
correspond to offdiagonal elements of the Hamiltonian in

counterclockwise (K0) isospin state at small B and then
changes to a clockwise (K) isospin at B! 250 mT. The
energy to add the third electron does the opposite. Fits to
the low field slopes for the second and third electron addi-
tion energies yield moments of 390 and "270 !eV=T,
respectively, with a difference in magnitudes within 10%
of 2!B, a signature of a spin-orbit-dominated spectrum
[13]. Thus we infer an orbital moment!orb ¼ 330 !eV=T
and a zero-field spin-orbit splitting !SO ¼ 170 !eV.

A consequence of the spectrum in Fig. 3(d) is a predicted
[15] minimum in T1 as the two K

0 states with opposite spin
approach one another at Bspin ¼ !SO=g!B, which for this

nanotube occurs at 1.4 T [cf. Fig. 3(d)]. The expected
coupling of these two states is via 1D bending-mode

phonons with quadratic dispersion, leading to a T1 /
ffiffiffiffi
!

p

dependence on the energy splitting ! due to the density-
of-states singularity at zero energy in 1D [15]. This is in
contrast to higher dimensions, where T1 diverges as! ! 0
[15,27,29].
Values for T1, extracted from fits as in Fig. 3(b), are

shown in Fig. 3(e), where a minimum in T1 is observed at
the predicted value B! 1:4 T. Also shown in Fig. 3(e) is a

fit of the form T1 ¼ C
ffiffiffiffiffiffi
!"

p
, where the splitting !" ¼

g!B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB cos""!SO=g!BÞ2 þ ðB sin"Þ2

p
is anticrossed,

accounting for a misalignment angle " between the nano-
tube axis and the direction of the applied field [30].
For these fits, we use g ¼ 2 and the measured quantities
!SO and " (5' determined by the electron micrograph); the
only free parameter is an overall scale for T1, C ¼
65 ns=

ffiffiffiffiffiffiffiffiffiffi
!eV

p
, only a factor of !5 smaller than the esti-

mates in Ref. [15]. Attributing the measured T1 minimum
to this mechanism requires loading a two-electron state
involving at least one of the two higher states of Fig. 3(d) at
step R, which is expected because the levels of the left
dot are well below the electrochemical potential of the
left lead at R. We note that hyperfine relaxation should
also be strongest near a degeneracy [25], but the ratio
!"=ðg!BBnucÞ ! 20 (Ref. [16]) would require huge inelas-
tic tunnel rates ruled out by transport measurements to
explain the measured T1.
We do not observe signatures of hyperfine-mediated

relaxation near B ¼ 0 [31], but note that a difference in
effective magnetic fields between the two dots should
induce dephasing of prepared two-particle spin and isospin
states. To measure the inhomogeneous dephasing time T(

2
of a state atB ¼ 0, a pulse cycle [Fig. 4(a)] first prepares an
ð0; 2Þ state at P, then separates the electrons via P0 into
ð1; 1Þ at S for a time #s, and finally measures the return
probability to ð0; 2Þ at M [3]. For small #s, the prepared
state always returns to ð0; 2Þ. For #s * T(

2 , a fraction of
prepared states evolves into blocked states, reducing the
return probability within the pulse triangle [Fig. 4(a)].
The dephasing time is obtained from the value of gs in

the center of the pulse triangle versus #s, which reflects the
probability of return to ð0; 2Þ when calibrated against the
equilibrium ð1; 1Þ and ð0; 2Þ values of gs [Fig. 4(b)]. A
likely source of dephasing is the hyperfine interaction.
Assuming a difference in Overhauser fields acting on the
two electrons of root mean square strength $Bjj

nuc parallel
to the nanotube axis [5,32], the decay is fit to a Gaussian
form, giving T(

2 ¼ @=g!B$B
jj
nuc ¼ 3:2 ns. The corre-

sponding $Bjj
nuc ¼ 1:8 mT is a factor of 2 smaller than

our estimate of the single dot nuclear field Bnuc in 13C
nanotubes [33]. The difference may be due to anisotropic
dipolar hyperfine coupling [34] or to accidental suppres-

sion of $Bjj
nuc [5]. Future work on 12C nanotubes will allow

dephasing mechanisms other than the hyperfine interaction
to be investigated.
Finally, we note that the saturation value of the return

probability in Fig. 4(c) is 0.17, smaller than the value of
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FIG. 3 (color online). (a) Leakage current through blockade
near zero detuning for small B, V12 ¼ "2 mV. (b) Decay of
pulse-triangle visibility I as a function of #M measured in the
center of the triangle at several values of B. (c) dgs=dVL as a
function of VL and B, showing the dependence of ground state
energies on B for the first four electrons on the left dot.
(d) Energy level diagram of the lowest states of a nanotube
with spin-orbit coupling; !SO ¼ 170 !eV, !KK0 ¼ 25 !eV,
" ¼ 5', and !orb ¼ 330 !eV=T. Arrows indicate the spin com-
ponent parallel to the nanotube axis. Schematics (right) indicate
orbital magnetic moment !orb for clockwise (K) and counter-
clockwise (K0) moving isospin states. At Borb (Bspin), the orbital

(Zeeman) shifts compensate !SO and states with opposite iso-
spin (spin) anticross. (e) T1 extracted as in (b) for B between 1.1
and 2 T. Error bars: Standard deviation of the fit parameter T1.
One-parameter fit (red curve) to theory of Ref. [15], modified for
B misaligned by 5' (see text).
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Field-induced polarization of Dirac valleys
in bismuth
Zengwei Zhu1, Aurélie Collaudin1, Benoît Fauqué1, Woun Kang2 and Kamran Behnia1*
The electronic structure of certain crystal lattices can contain multiple degenerate ’valleys’ for their charge carriers to occupy.
This valley degree of freedom could be useful in the development of electronic devices. The principal challenge in the
development of ’valleytronics’ is to lift the valley degeneracy of charge carriers in a controlled way. Here we show that in
semi-metallic bismuth the flow of Dirac fermions along the trigonal axis is extremely sensitive to the orientation of in-plane
magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the
total conductivity. At high temperature and low magnetic field, bismuth’s three valleys are interchangeable and the three-fold
symmetry of its lattice is maintained. As the temperature is decreased or the magnetic field increased, this symmetry is
spontaneously lost. This loss may be an experimental manifestation of the recently proposed valley-nematic Fermi liquid state.

Valley degeneracy, in addition to the emblematic case
of graphene1–4, has been explored in two-dimensional
semiconductors such as AlAs heterostructures5,6 and the

surface states of silicon7,8. These systems, in contrast to graphene,
are hosts to valleys, which present a parabolic dispersion and a
significant in-planemass anisotropy. Recently, it has been proposed
that in the presence of such an anisotropy, Coulomb interaction
energetically favours a spontaneous imbalance in the occupation of
different valleys9.

The Fermi surface of semi-metallic bismuth includes three
cigar-shaped electron valleys lying almost perpendicular to the
high-symmetry axis known as the trigonal axis10. The in-planemass
anisotropy of each valley exceeds 200 (ref. 11). This exceptional
feature is a consequence of aDirac dispersion12 with a quadratic13 or
Zeeman14 correction, which markedly decreases the effective mass
along two of the three orientations. At the bottom of the band,
according to experiments carried out long ago10, m1 = 0.0011me,
m2 = 0.26me and m3 = 0.0044me (where 1, 2 and 3 refer to
binary, bisectrix and trigonal axes), in fair agreement with a tight-
biding model11. This extreme anisotropy has been quantitatively
confirmed by a very recent study of the angle-resolved Landau
spectrum15. In the past few years, the electronic properties of
bismuth in the presence of a strongmagnetic have become a focus of
attention16–20. The high-field phase diagram of the Dirac electrons
in the extreme quantum limit18 presents more lines than what is
expected in the non-interacting theoretical picture19,20. The origin
of these additional field scales is yet to be understood.

Here, we show that in bismuth, owing to this large mass
anisotropy, a valley-polarized current can easily be generated with
a well-oriented magnetic field of modest magnitude. According to
our measurements, charge conductivity by carriers of a single valley
can exceed four-fifths of the total conductivity in a wide range of
temperature and magnetic field.

We report on a study of angular-dependent magnetoresistance
on bismuth single crystals with a mobility in the range of
106–107 cm2 V−1 s−1 (see Supplementary Information for details
on sample mobility), carried out in a configuration designed
to tune the contribution of each of the three valleys to charge
transport. In a wide range of temperature and magnetic field, the

1LPEM (UPMC-CNRS), Ecole Supérieure de Physique et de Chimie Industrielles, 75005 Paris, France, 2Department of Physics, EwhaWomans University,
Seoul 120-750, Korea. *e-mail: kamran.behnia@espci.fr.

magnetoconductivity of electrons can be quantitatively described as
the sum of three contributions interchangeable by a 120◦ rotation.
As the field rotates, the contribution of each valley to the total
conductivity can be tuned and a valley-polarized conductivity
exceeding 80% can be achieved. At high temperatures and low
magnetic fields, this simple description based on the assumption
that there is no difference between the zero-field population of
the three valleys is successful. However, as the temperature is
lowered or the magnetic field is increased, magnetoresistance does
not exhibit the three-fold symmetry of the underlying lattice
and the conductivity cannot be described as the sum of three
equivalent, rotationally symmetrical channels. This spontaneous
loss of valley degeneracymay be a consequence of electron–electron
interaction in the presence of anisotropic electron dispersion as
recently suggested9.

Figure 1a shows the experimental configuration. Resistivity was
measured along the trigonal axis, with a magnetic field rotating
in the (binary, bisectrix) plane. In this configuration, the vector
product of the two vectors, magnetic field, B, and current density,
J, remains constant during the rotation. Charge carriers travelling
along the trigonal axis are either holes or valley-degenerate
electrons. The response of these carriers to the applied magnetic
field is determined by their mobility in the plane perpendicular to
the orientation of the magnetic field. As a result of the extreme
anisotropy of the mobility tensor of each of the three Dirac
valleys (Fig. 1b), angular oscillations in magnetoresistance emerge
at temperatures as high as room temperature and magnetic fields as
low as 0.7 T (Fig. 1c).

Figure 1d presents a typical set of data for one of the samples
at B = 0.5 T at different temperatures. As a result of the lightness
of electrons, ωcτ is larger than unity in the entire temperature
range. Here, ωc = eB/m⊥ is the cyclotron frequency, τ is the
scattering time, e is the electron charge and m⊥ is the effective
mass in the plane perpendicular to the magnetic field. The
dependence of the magnetoresistance on both temperature and the
orientation of the magnetic field can be qualitatively understood
by considering the magnitude of ωcτ . As seen in the figure,
resistivity increases with decreasing temperature. This insulating-
like behaviour is visible for all orientations of the magnetic field21.

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1

Pályi András
BME Nanoszeminárium JC, 2011.10.27.

ARTICLES
PUBLISHED ONLINE: 16 OCTOBER 2011 | DOI: 10.1038 / NPHYS2111

Field-induced polarization of Dirac valleys
in bismuth
Zengwei Zhu1, Aurélie Collaudin1, Benoît Fauqué1, Woun Kang2 and Kamran Behnia1*
The electronic structure of certain crystal lattices can contain multiple degenerate ’valleys’ for their charge carriers to occupy.
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development of ’valleytronics’ is to lift the valley degeneracy of charge carriers in a controlled way. Here we show that in
semi-metallic bismuth the flow of Dirac fermions along the trigonal axis is extremely sensitive to the orientation of in-plane
magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the
total conductivity. At high temperature and low magnetic field, bismuth’s three valleys are interchangeable and the three-fold
symmetry of its lattice is maintained. As the temperature is decreased or the magnetic field increased, this symmetry is
spontaneously lost. This loss may be an experimental manifestation of the recently proposed valley-nematic Fermi liquid state.

V alley degeneracy, in addition to the emblematic case
of graphene1–4 , has been explored in two-dimensional
semiconductors such as A lAs heterostructures5,6 and the

surface states of silicon7,8 . These systems, in contrast to graphene,
are hosts to valleys, which present a parabolic dispersion and a
significant in-plane mass anisotropy. Recently, it has been proposed
that in the presence of such an anisotropy, Coulomb interaction
energetically favours a spontaneous imbalance in the occupation of
different valleys9 .

The Fermi surface of semi-metallic bismuth includes three
cigar-shaped electron valleys lying almost perpendicular to the
high-symmetry axis known as the trigonal axis10 . The in-plane mass
anisotropy of each valley exceeds 200 (ref. 11). This exceptional
feature is a consequence of a D irac dispersion12 with a quadratic13 or
Zeeman14 correction, which markedly decreases the effective mass
along two of the three orientations. At the bottom of the band,
according to experiments carried out long ago10 , m1 = 0.0011me ,
m2 = 0.26me and m3 = 0.0044me (where 1, 2 and 3 refer to
binary, bisectrix and trigonal axes), in fair agreement with a tight-
biding model11 . This extreme anisotropy has been quantitatively
confirmed by a very recent study of the angle-resolved Landau
spectrum15 . In the past few years, the electronic properties of
bismuth in the presence of a strong magnetic have become a focus of
attention16–20 . The high-field phase diagram of the D irac electrons
in the extreme quantum limit18 presents more lines than what is
expected in the non-interacting theoretical picture19,20 . The origin
of these additional field scales is yet to be understood.

H ere, we show that in bismuth, owing to this large mass
anisotropy, a valley-polarized current can easily be generated with
a well-oriented magnetic field of modest magnitude. According to
our measurements, charge conductivity by carriers of a single valley
can exceed four-fifths of the total conductivity in a wide range of
temperature and magnetic field.

We report on a study of angular-dependent magnetoresistance
on bismuth single crystals with a mobility in the range of
106–107 cm2 V−1 s−1 (see Supplementary Information for details
on sample mobility), carried out in a configuration designed
to tune the contribution of each of the three valleys to charge
transport. In a wide range of temperature and magnetic field, the
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magnetoconductivity of electrons can be quantitatively described as
the sum of three contributions interchangeable by a 120◦ rotation.
As the field rotates, the contribution of each valley to the total
conductivity can be tuned and a valley-polarized conductivity
exceeding 80% can be achieved. At high temperatures and low
magnetic fields, this simple description based on the assumption
that there is no difference between the zero-field population of
the three valleys is successful. H owever, as the temperature is
lowered or the magnetic field is increased, magnetoresistance does
not exhibit the three-fold symmetry of the underlying lattice
and the conductivity cannot be described as the sum of three
equivalent, rotationally symmetrical channels. This spontaneous
loss of valley degeneracy may be a consequence of electron–electron
interaction in the presence of anisotropic electron dispersion as
recently suggested9 .

Figure 1a shows the experimental configuration. Resistivity was
measured along the trigonal axis, with a magnetic field rotating
in the (binary, bisectrix) plane. In this configuration, the vector
product of the two vectors, magnetic field, B, and current density,
J, remains constant during the rotation. Charge carriers travelling
along the trigonal axis are either holes or valley-degenerate
electrons. The response of these carriers to the applied magnetic
field is determined by their mobility in the plane perpendicular to
the orientation of the magnetic field. As a result of the extreme
anisotropy of the mobility tensor of each of the three D irac
valleys (Fig. 1b), angular oscillations in magnetoresistance emerge
at temperatures as high as room temperature and magnetic fields as
low as 0.7 T (Fig. 1c).

Figure 1d presents a typical set of data for one of the samples
at B = 0.5 T at different temperatures. As a result of the lightness
of electrons, ωcτ is larger than unity in the entire temperature
range. H ere, ωc = eB/m⊥ is the cyclotron frequency, τ is the
scattering time, e is the electron charge and m⊥ is the effective
mass in the plane perpendicular to the magnetic field. The
dependence of the magnetoresistance on both temperature and the
orientation of the magnetic field can be qualitatively understood
by considering the magnitude of ωcτ . As seen in the figure,
resistivity increases with decreasing temperature. This insulating-
like behaviour is visible for all orientations of the magnetic field21 .
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Figure 1 | The experimental configuration, the structure of the Fermi
surface and angle-dependent magnetoresistance. a, Magnetoresistance of
bismuth crystals was measured along the trigonal axis while the magnetic
field, B, was rotating in the (binary, bisectrix) plane. The two vectors B and
J were kept normal to each other during the rotation. b, The orientation of
the three electron valleys with respect to the crystal axes in bismuth.
c, Angular-dependent magnetoresistance at room temperature at different
magnetic fields. Oscillations are detectable when the magnetic field
exceeds 0.7 T. d, The evolution of angle-dependent magnetoresistance at
B=0.5T with temperature. Resistivity oscillates with π/3 periodicity. It
peaks each time the field is parallel or anti-parallel to one of the three
bisectrix axes.

This is because the temperature dependence of magnetoresistance
is not set by the thermal evolution of the zero-field resistivity, which
is metallic22 (see Supplementary Information for details), but by the
magnitude of ωcτ . As the scattering time increases with decreasing
temperature, the magnetoresistance follows. The π/3 periodicity of
the angular oscillations is also set by ωcτ . Magnetoresistance peaks
each time the magnetic field is oriented parallel or anti-parallel
to a bisectrix axis. In this configuration, there is a set of carriers
travelling in the plane perpendicular to the magnetic field with
minimal cyclotron mass (and maximal ωc). These carriers are those
which give rise to the largest magnetoresistance. As the in-plane
mass of the hole-like carriers is isotropic, one does not expect them
to be affected by the orientation of the in-planemagnetic field.

Down to 20K, these angular oscillations present an equal
amplitude within our experimental uncertainty. Below this
temperature, an inequality in the amplitude of angular oscillations
grows steadily as the temperature decreases. We first focus
on the regime where the three-fold symmetry is preserved.
Figure 2a presents a polar plot of the resistivity data at a fixed
temperature and magnetic field (T = 40K and B = 0.5 T). Such
a presentation was first used in ref. 23 and is particularly instructive
to compare the rotational symmetries of the magnetoresistance and
the underlying lattice.

In a multi-valley system in the presence of a magnetic field,
the electric conductivity, σ , is expected to be the sum of
the contributions of individual valleys24. In our particular case,
one can write:

σzz =
∑

i=1−3

σ ei
zz +σ h

zz (1)

where the conductivity of electron pockets and the hole pocket are
indexed by e1,3 and h. The conductivity tensor, σ , is the inverse of
the resistivity tensor, ρ, and, in general, the precise determination
of σzz implies knowledge of all off-diagonal resistivity components.
However, in the particular case of bismuth, a compensated semi-
metal, the off-diagonal components are known to be small (that is,
ρxz " ρzz and ρzy " ρzz ; ref. 22). Therefore, setting σzz = ρ−1

zz is an
approximation that is valid at least up to a few per cent.

Figure 2b presents a polar presentation of the angular depen-
dence of conductivity extracted from the resistivity. We found that
the simplest fit to the experimental data is given by the following
function with three adjustable parameters:

σzz =
∑

i=1−3

σbin

1+ r cos2(φ+ (i−1) 2π3 )
+σ h (2)

We assume an angular-independent conductivity for the hole
pocket σ h. The contribution of each of the three electron pockets
is described by the same angular function rotated by 2π/3. The
magnetoresistance of an electron ellipsoid is lowest when the field
is oriented along the binary axis, which lies perpendicular to
the longer axis of that particular ellipsoid. In this configuration,
the magnetoconducivity of the ellipsoid in question acquires its
largest value, namely σbin. As the field rotates, magnetoresistance
increases and the conductivity decreases until the field becomes
parallel to the longer axis of the ellipsoid, which corresponds to a
bisectrix orientation. In this configuration, the magnetoresistance
attains its peak and the magnetoconductance its minimal value
(σbis = σbin/(1+ r)). Thus, the parameter r is a measure of the
anisotropy of magnetoconductivity of an ellipsoid at a given
temperature and field.

In a first approximation, the magnetoresistance is set by the
cyclotron mass of electrons for a particular orientation of the
magnetic field. Now, the cyclotron mass along the binary axis
(mbin

c = √
m2m3) is 15 times larger than along the bisectrix axis

(mbis
c = √

m1m3). Thus, equation (2) assumes an anisotropy that
matches the known structure of an electron ellipsoid.

Figure 2b shows in a polar representation the best fit to the data
by this equation. As seen in the figure, the fit is satisfactory and
allows a quantified observation about the relative contribution of
each pocket to the total conductivity.

Figure 3a shows how the magnetic field tunes the contribution
of different valleys at T = 40K and B= 0.5 T. As the contribution
of the hole pocket is a small fraction of the total conductivity,
for all orientations, charge conductivity is dominated by the flow
of electrons and not holes. As the field rotates, the contribution
of each electron valley to the total conductivity changes. When
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Field-induced polarization of Dirac valleys
in bismuth
Zengwei Zhu1, Aurélie Collaudin1, Benoît Fauqué1, Woun Kang2 and Kamran Behnia1*
The electronic structure of certain crystal lattices can contain multiple degenerate ’valleys’ for their charge carriers to occupy.
This valley degree of freedom could be useful in the development of electronic devices. The principal challenge in the
development of ’valleytronics’ is to lift the valley degeneracy of charge carriers in a controlled way. Here we show that in
semi-metallic bismuth the flow of Dirac fermions along the trigonal axis is extremely sensitive to the orientation of in-plane
magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the
total conductivity. At high temperature and low magnetic field, bismuth’s three valleys are interchangeable and the three-fold
symmetry of its lattice is maintained. As the temperature is decreased or the magnetic field increased, this symmetry is
spontaneously lost. This loss may be an experimental manifestation of the recently proposed valley-nematic Fermi liquid state.

Valley degeneracy, in addition to the emblematic case
of graphene1–4, has been explored in two-dimensional
semiconductors such as AlAs heterostructures5,6 and the

surface states of silicon7,8. These systems, in contrast to graphene,
are hosts to valleys, which present a parabolic dispersion and a
significant in-planemass anisotropy. Recently, it has been proposed
that in the presence of such an anisotropy, Coulomb interaction
energetically favours a spontaneous imbalance in the occupation of
different valleys9.

The Fermi surface of semi-metallic bismuth includes three
cigar-shaped electron valleys lying almost perpendicular to the
high-symmetry axis known as the trigonal axis10. The in-planemass
anisotropy of each valley exceeds 200 (ref. 11). This exceptional
feature is a consequence of aDirac dispersion12 with a quadratic13 or
Zeeman14 correction, which markedly decreases the effective mass
along two of the three orientations. At the bottom of the band,
according to experiments carried out long ago10, m1 = 0.0011me,
m2 = 0.26me and m3 = 0.0044me (where 1, 2 and 3 refer to
binary, bisectrix and trigonal axes), in fair agreement with a tight-
biding model11. This extreme anisotropy has been quantitatively
confirmed by a very recent study of the angle-resolved Landau
spectrum15. In the past few years, the electronic properties of
bismuth in the presence of a strongmagnetic have become a focus of
attention16–20. The high-field phase diagram of the Dirac electrons
in the extreme quantum limit18 presents more lines than what is
expected in the non-interacting theoretical picture19,20. The origin
of these additional field scales is yet to be understood.

Here, we show that in bismuth, owing to this large mass
anisotropy, a valley-polarized current can easily be generated with
a well-oriented magnetic field of modest magnitude. According to
our measurements, charge conductivity by carriers of a single valley
can exceed four-fifths of the total conductivity in a wide range of
temperature and magnetic field.

We report on a study of angular-dependent magnetoresistance
on bismuth single crystals with a mobility in the range of
106–107 cm2 V−1 s−1 (see Supplementary Information for details
on sample mobility), carried out in a configuration designed
to tune the contribution of each of the three valleys to charge
transport. In a wide range of temperature and magnetic field, the
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magnetoconductivity of electrons can be quantitatively described as
the sum of three contributions interchangeable by a 120◦ rotation.
As the field rotates, the contribution of each valley to the total
conductivity can be tuned and a valley-polarized conductivity
exceeding 80% can be achieved. At high temperatures and low
magnetic fields, this simple description based on the assumption
that there is no difference between the zero-field population of
the three valleys is successful. However, as the temperature is
lowered or the magnetic field is increased, magnetoresistance does
not exhibit the three-fold symmetry of the underlying lattice
and the conductivity cannot be described as the sum of three
equivalent, rotationally symmetrical channels. This spontaneous
loss of valley degeneracymay be a consequence of electron–electron
interaction in the presence of anisotropic electron dispersion as
recently suggested9.

Figure 1a shows the experimental configuration. Resistivity was
measured along the trigonal axis, with a magnetic field rotating
in the (binary, bisectrix) plane. In this configuration, the vector
product of the two vectors, magnetic field, B, and current density,
J, remains constant during the rotation. Charge carriers travelling
along the trigonal axis are either holes or valley-degenerate
electrons. The response of these carriers to the applied magnetic
field is determined by their mobility in the plane perpendicular to
the orientation of the magnetic field. As a result of the extreme
anisotropy of the mobility tensor of each of the three Dirac
valleys (Fig. 1b), angular oscillations in magnetoresistance emerge
at temperatures as high as room temperature and magnetic fields as
low as 0.7 T (Fig. 1c).

Figure 1d presents a typical set of data for one of the samples
at B = 0.5 T at different temperatures. As a result of the lightness
of electrons, ωcτ is larger than unity in the entire temperature
range. Here, ωc = eB/m⊥ is the cyclotron frequency, τ is the
scattering time, e is the electron charge and m⊥ is the effective
mass in the plane perpendicular to the magnetic field. The
dependence of the magnetoresistance on both temperature and the
orientation of the magnetic field can be qualitatively understood
by considering the magnitude of ωcτ . As seen in the figure,
resistivity increases with decreasing temperature. This insulating-
like behaviour is visible for all orientations of the magnetic field21.
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Field-induced polarization of Dirac valleys
in bismuth
Zengwei Zhu1, Aurélie Collaudin1, Benoît Fauqué1, Woun Kang2 and Kamran Behnia1*
The electronic structure of certain crystal lattices can contain multiple degenerate ’valleys’ for their charge carriers to occupy.
This valley degree of freedom could be useful in the development of electronic devices. The principal challenge in the
development of ’valleytronics’ is to lift the valley degeneracy of charge carriers in a controlled way. Here we show that in
semi-metallic bismuth the flow of Dirac fermions along the trigonal axis is extremely sensitive to the orientation of in-plane
magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the
total conductivity. At high temperature and low magnetic field, bismuth’s three valleys are interchangeable and the three-fold
symmetry of its lattice is maintained. As the temperature is decreased or the magnetic field increased, this symmetry is
spontaneously lost. This loss may be an experimental manifestation of the recently proposed valley-nematic Fermi liquid state.

V alley degeneracy, in addition to the emblematic case
of graphene1–4 , has been explored in two-dimensional
semiconductors such as A lAs heterostructures5,6 and the

surface states of silicon7,8 . These systems, in contrast to graphene,
are hosts to valleys, which present a parabolic dispersion and a
significant in-plane mass anisotropy. Recently, it has been proposed
that in the presence of such an anisotropy, Coulomb interaction
energetically favours a spontaneous imbalance in the occupation of
different valleys9 .

The Fermi surface of semi-metallic bismuth includes three
cigar-shaped electron valleys lying almost perpendicular to the
high-symmetry axis known as the trigonal axis10 . The in-plane mass
anisotropy of each valley exceeds 200 (ref. 11). This exceptional
feature is a consequence of a D irac dispersion12 with a quadratic13 or
Zeeman14 correction, which markedly decreases the effective mass
along two of the three orientations. At the bottom of the band,
according to experiments carried out long ago10 , m1 = 0.0011me ,
m2 = 0.26me and m3 = 0.0044me (where 1, 2 and 3 refer to
binary, bisectrix and trigonal axes), in fair agreement with a tight-
biding model11 . This extreme anisotropy has been quantitatively
confirmed by a very recent study of the angle-resolved Landau
spectrum15 . In the past few years, the electronic properties of
bismuth in the presence of a strong magnetic have become a focus of
attention16–20 . The high-field phase diagram of the D irac electrons
in the extreme quantum limit18 presents more lines than what is
expected in the non-interacting theoretical picture19,20 . The origin
of these additional field scales is yet to be understood.

H ere, we show that in bismuth, owing to this large mass
anisotropy, a valley-polarized current can easily be generated with
a well-oriented magnetic field of modest magnitude. According to
our measurements, charge conductivity by carriers of a single valley
can exceed four-fifths of the total conductivity in a wide range of
temperature and magnetic field.

We report on a study of angular-dependent magnetoresistance
on bismuth single crystals with a mobility in the range of
106–107 cm2 V−1 s−1 (see Supplementary Information for details
on sample mobility), carried out in a configuration designed
to tune the contribution of each of the three valleys to charge
transport. In a wide range of temperature and magnetic field, the
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magnetoconductivity of electrons can be quantitatively described as
the sum of three contributions interchangeable by a 120◦ rotation.
As the field rotates, the contribution of each valley to the total
conductivity can be tuned and a valley-polarized conductivity
exceeding 80% can be achieved. At high temperatures and low
magnetic fields, this simple description based on the assumption
that there is no difference between the zero-field population of
the three valleys is successful. H owever, as the temperature is
lowered or the magnetic field is increased, magnetoresistance does
not exhibit the three-fold symmetry of the underlying lattice
and the conductivity cannot be described as the sum of three
equivalent, rotationally symmetrical channels. This spontaneous
loss of valley degeneracy may be a consequence of electron–electron
interaction in the presence of anisotropic electron dispersion as
recently suggested9 .

Figure 1a shows the experimental configuration. Resistivity was
measured along the trigonal axis, with a magnetic field rotating
in the (binary, bisectrix) plane. In this configuration, the vector
product of the two vectors, magnetic field, B, and current density,
J, remains constant during the rotation. Charge carriers travelling
along the trigonal axis are either holes or valley-degenerate
electrons. The response of these carriers to the applied magnetic
field is determined by their mobility in the plane perpendicular to
the orientation of the magnetic field. As a result of the extreme
anisotropy of the mobility tensor of each of the three D irac
valleys (Fig. 1b), angular oscillations in magnetoresistance emerge
at temperatures as high as room temperature and magnetic fields as
low as 0.7 T (Fig. 1c).

Figure 1d presents a typical set of data for one of the samples
at B = 0.5 T at different temperatures. As a result of the lightness
of electrons, ωcτ is larger than unity in the entire temperature
range. H ere, ωc = eB/m⊥ is the cyclotron frequency, τ is the
scattering time, e is the electron charge and m⊥ is the effective
mass in the plane perpendicular to the magnetic field. The
dependence of the magnetoresistance on both temperature and the
orientation of the magnetic field can be qualitatively understood
by considering the magnitude of ωcτ . As seen in the figure,
resistivity increases with decreasing temperature. This insulating-
like behaviour is visible for all orientations of the magnetic field21 .
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Figure 1 | The experimental configuration, the structure of the Fermi
surface and angle-dependent magnetoresistance. a, Magnetoresistance of
bismuth crystals was measured along the trigonal axis while the magnetic
field, B, was rotating in the (binary, bisectrix) plane. The two vectors B and
J were kept normal to each other during the rotation. b, The orientation of
the three electron valleys with respect to the crystal axes in bismuth.
c, Angular-dependent magnetoresistance at room temperature at different
magnetic fields. Oscillations are detectable when the magnetic field
exceeds 0.7 T. d, The evolution of angle-dependent magnetoresistance at
B=0.5T with temperature. Resistivity oscillates with π/3 periodicity. It
peaks each time the field is parallel or anti-parallel to one of the three
bisectrix axes.

This is because the temperature dependence of magnetoresistance
is not set by the thermal evolution of the zero-field resistivity, which
is metallic22 (see Supplementary Information for details), but by the
magnitude of ωcτ . As the scattering time increases with decreasing
temperature, the magnetoresistance follows. The π/3 periodicity of
the angular oscillations is also set by ωcτ . Magnetoresistance peaks
each time the magnetic field is oriented parallel or anti-parallel
to a bisectrix axis. In this configuration, there is a set of carriers
travelling in the plane perpendicular to the magnetic field with
minimal cyclotron mass (and maximal ωc). These carriers are those
which give rise to the largest magnetoresistance. As the in-plane
mass of the hole-like carriers is isotropic, one does not expect them
to be affected by the orientation of the in-planemagnetic field.

Down to 20K, these angular oscillations present an equal
amplitude within our experimental uncertainty. Below this
temperature, an inequality in the amplitude of angular oscillations
grows steadily as the temperature decreases. We first focus
on the regime where the three-fold symmetry is preserved.
Figure 2a presents a polar plot of the resistivity data at a fixed
temperature and magnetic field (T = 40K and B = 0.5 T). Such
a presentation was first used in ref. 23 and is particularly instructive
to compare the rotational symmetries of the magnetoresistance and
the underlying lattice.

In a multi-valley system in the presence of a magnetic field,
the electric conductivity, σ , is expected to be the sum of
the contributions of individual valleys24. In our particular case,
one can write:

σzz =
∑

i=1−3

σ ei
zz +σ h

zz (1)

where the conductivity of electron pockets and the hole pocket are
indexed by e1,3 and h. The conductivity tensor, σ , is the inverse of
the resistivity tensor, ρ, and, in general, the precise determination
of σzz implies knowledge of all off-diagonal resistivity components.
However, in the particular case of bismuth, a compensated semi-
metal, the off-diagonal components are known to be small (that is,
ρxz " ρzz and ρzy " ρzz ; ref. 22). Therefore, setting σzz = ρ−1

zz is an
approximation that is valid at least up to a few per cent.

Figure 2b presents a polar presentation of the angular depen-
dence of conductivity extracted from the resistivity. We found that
the simplest fit to the experimental data is given by the following
function with three adjustable parameters:

σzz =
∑

i=1−3

σbin

1+ r cos2(φ+(i−1) 2π3 )
+σ h (2)

We assume an angular-independent conductivity for the hole
pocket σ h. The contribution of each of the three electron pockets
is described by the same angular function rotated by 2π/3. The
magnetoresistance of an electron ellipsoid is lowest when the field
is oriented along the binary axis, which lies perpendicular to
the longer axis of that particular ellipsoid. In this configuration,
the magnetoconducivity of the ellipsoid in question acquires its
largest value, namely σbin. As the field rotates, magnetoresistance
increases and the conductivity decreases until the field becomes
parallel to the longer axis of the ellipsoid, which corresponds to a
bisectrix orientation. In this configuration, the magnetoresistance
attains its peak and the magnetoconductance its minimal value
(σbis = σbin/(1+ r)). Thus, the parameter r is a measure of the
anisotropy of magnetoconductivity of an ellipsoid at a given
temperature and field.

In a first approximation, the magnetoresistance is set by the
cyclotron mass of electrons for a particular orientation of the
magnetic field. Now, the cyclotron mass along the binary axis
(mbin

c = √
m2m3) is 15 times larger than along the bisectrix axis

(mbis
c = √

m1m3). Thus, equation (2) assumes an anisotropy that
matches the known structure of an electron ellipsoid.

Figure 2b shows in a polar representation the best fit to the data
by this equation. As seen in the figure, the fit is satisfactory and
allows a quantified observation about the relative contribution of
each pocket to the total conductivity.

Figure 3a shows how the magnetic field tunes the contribution
of different valleys at T = 40K and B= 0.5 T. As the contribution
of the hole pocket is a small fraction of the total conductivity,
for all orientations, charge conductivity is dominated by the flow
of electrons and not holes. As the field rotates, the contribution
of each electron valley to the total conductivity changes. When
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Figure 2 | The contribution of different components of the Fermi surface
to the total conductivity in polar coordinates. a, Polar representation of the
angular dependence of resistivity at B=0.5T and T=40K. b, Polar plot of
charge conductivity (red line) according to the experimental data
compared to a three-parameter fit (black line) following equation (2). The
contribution of each electron pocket (e1–e3) as well as the hole pocket (h)
to the total conductivity is also plotted.

it is oriented along a binary axis, one of the three electron
pockets dominates the total conductivity. As seen in the figure,
the valley-polarized conductivity exceeds 80% in this configuration.
This is a consequence of the large magnitude of r , in turn a
consequence of the large in-plane anisotropy of the cyclotron mass
for each valley in bismuth.

In a wide range of temperature and magnetic field, when
the three-fold symmetry of the lattice is preserved, equation (2)
was found to be a successful fit to the data (see Supplementary
Information). This allowed us to extract the three parameters σ h,
σbin and r for each temperature and magnetic field. Figure 3b plots
the temperature dependence of r for different magnetic fields. As
seen in the figure, the peak value for r (that is ∼40) is attained in
the intermediate temperature range centred around 40K. This is
where the in-plane magnetic field is most efficient for generating
a valley-polarized current.

Below this intermediate temperature range, r decreases as the
temperature lowers. This indicates a decrease in the mobility
anisotropy below 30K. Mobility is set by the ratio of the scattering
time to the effective mass. The scattering time can also be
anisotropic and this anisotropy can be temperature dependent. In
a first approximation, its anisotropy damps the anisotropy of the
effective mass. When the field is along a bisectrix axis, the effective
mass in the perpendicular plane is lighter, but because the phase
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Figure 3 | Field-induced valley polarization across a wide temperature
range. a, Angular dependence of the contribution of each electron valley, as
well as their sum,

∑
σe, to the total conductivity, σtotal. When the field is

along a binary direction, because of the large r, one of the valleys easily
dominates the total conductivity. Moreover, the total conductivity by
electrons is much larger than the contribution of the holes. b, The
temperature dependence of r for different magnetic fields. A large r is
attained in the intermediate temperature range. For each temperature, r is
obtained by finding the best fit between the data and equation (2). Error
bars represent a window defined by the standard deviation between the fit
and the data.

space for scattering is decreased, the scattering time is longer. Below
20K, the enhancement in the anisotropy of the scattering time
decreases the anisotropy of mobility and r . This would indeed
be the case if electrons residing in each valley are scattered by
those residing in another valley through Coulomb interaction, as
initially suggested in ref. 22.

At high temperatures, r also decreases. The oscillations gradually
smear out as the thermal energy becomes comparable to the Fermi
energy (∼22meV) for the electrons10,11. Remarkably however,
in this temperature regime, a large r is gradually restored
as the magnetic field increases. This indicates that orbital
magnetoresistance can become an effective valley valve, even when
the system exits the degenerate Fermi regime, provided that the
magnetic length ("B = √

h̄/eB) becomes shorter than the thermal
de Broglie length (λ= h/

√
2πm∗kBT ). This interesting regime has

been poorly studied and deserves further exploration.
The findings reported above show that, in the presence of

anisotropic dispersion, the orbital magnetoresistance can tune
the contribution of different valleys to the total conductivity. In
multi-valley systems with modest mass anisotropy such as Si(111)
or AlAs or on the (111) surface of bismuth itself25, this effect can
be used to inject a valley-polarized flow into the two-dimensional
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Figure 1 | The experimental configuration, the structure of the Fermi
surface and angle-dependent magnetoresistance. a, Magnetoresistance of
bismuth crystals was measured along the trigonal axis while the magnetic
field, B, was rotating in the (binary, bisectrix) plane. The two vectors B and
J were kept normal to each other during the rotation. b, The orientation of
the three electron valleys with respect to the crystal axes in bismuth.
c, Angular-dependent magnetoresistance at room temperature at different
magnetic fields. Oscillations are detectable when the magnetic field
exceeds 0.7 T. d, The evolution of angle-dependent magnetoresistance at
B=0.5T with temperature. Resistivity oscillates with π/3 periodicity. It
peaks each time the field is parallel or anti-parallel to one of the three
bisectrix axes.

This is because the temperature dependence of magnetoresistance
is not set by the thermal evolution of the zero-field resistivity, which
is metallic22 (see Supplementary Information for details), but by the
magnitude of ωcτ . As the scattering time increases with decreasing
temperature, the magnetoresistance follows. The π/3 periodicity of
the angular oscillations is also set by ωcτ . Magnetoresistance peaks
each time the magnetic field is oriented parallel or anti-parallel
to a bisectrix axis. In this configuration, there is a set of carriers
travelling in the plane perpendicular to the magnetic field with
minimal cyclotron mass (and maximal ωc). These carriers are those
which give rise to the largest magnetoresistance. As the in-plane
mass of the hole-like carriers is isotropic, one does not expect them
to be affected by the orientation of the in-planemagnetic field.

Down to 20K, these angular oscillations present an equal
amplitude within our experimental uncertainty. Below this
temperature, an inequality in the amplitude of angular oscillations
grows steadily as the temperature decreases. We first focus
on the regime where the three-fold symmetry is preserved.
Figure 2a presents a polar plot of the resistivity data at a fixed
temperature and magnetic field (T = 40K and B = 0.5 T). Such
a presentation was first used in ref. 23 and is particularly instructive
to compare the rotational symmetries of the magnetoresistance and
the underlying lattice.

In a multi-valley system in the presence of a magnetic field,
the electric conductivity, σ , is expected to be the sum of
the contributions of individual valleys24. In our particular case,
one can write:

σzz =
∑

i=1−3

σ ei
zz +σ h

zz (1)

where the conductivity of electron pockets and the hole pocket are
indexed by e1,3 and h. The conductivity tensor, σ , is the inverse of
the resistivity tensor, ρ, and, in general, the precise determination
of σzz implies knowledge of all off-diagonal resistivity components.
However, in the particular case of bismuth, a compensated semi-
metal, the off-diagonal components are known to be small (that is,
ρxz " ρzz and ρzy " ρzz ; ref. 22). Therefore, setting σzz = ρ−1

zz is an
approximation that is valid at least up to a few per cent.

Figure 2b presents a polar presentation of the angular depen-
dence of conductivity extracted from the resistivity. We found that
the simplest fit to the experimental data is given by the following
function with three adjustable parameters:

σzz =
∑

i=1−3

σbin

1+ r cos2(φ+(i−1) 2π3 )
+σ h (2)

We assume an angular-independent conductivity for the hole
pocket σ h. The contribution of each of the three electron pockets
is described by the same angular function rotated by 2π/3. The
magnetoresistance of an electron ellipsoid is lowest when the field
is oriented along the binary axis, which lies perpendicular to
the longer axis of that particular ellipsoid. In this configuration,
the magnetoconducivity of the ellipsoid in question acquires its
largest value, namely σbin. As the field rotates, magnetoresistance
increases and the conductivity decreases until the field becomes
parallel to the longer axis of the ellipsoid, which corresponds to a
bisectrix orientation. In this configuration, the magnetoresistance
attains its peak and the magnetoconductance its minimal value
(σbis = σbin/(1+ r)). Thus, the parameter r is a measure of the
anisotropy of magnetoconductivity of an ellipsoid at a given
temperature and field.

In a first approximation, the magnetoresistance is set by the
cyclotron mass of electrons for a particular orientation of the
magnetic field. Now, the cyclotron mass along the binary axis
(mbin

c = √
m2m3) is 15 times larger than along the bisectrix axis

(mbis
c = √

m1m3). Thus, equation (2) assumes an anisotropy that
matches the known structure of an electron ellipsoid.

Figure 2b shows in a polar representation the best fit to the data
by this equation. As seen in the figure, the fit is satisfactory and
allows a quantified observation about the relative contribution of
each pocket to the total conductivity.

Figure 3a shows how the magnetic field tunes the contribution
of different valleys at T = 40K and B= 0.5 T. As the contribution
of the hole pocket is a small fraction of the total conductivity,
for all orientations, charge conductivity is dominated by the flow
of electrons and not holes. As the field rotates, the contribution
of each electron valley to the total conductivity changes. When
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Figure 2 | The contribution of different components of the Fermi surface
to the total conductivity in polar coordinates. a, Polar representation of the
angular dependence of resistivity at B=0.5T and T=40K. b, Polar plot of
charge conductivity (red line) according to the experimental data
compared to a three-parameter fit (black line) following equation (2). The
contribution of each electron pocket (e1–e3) as well as the hole pocket (h)
to the total conductivity is also plotted.

it is oriented along a binary axis, one of the three electron
pockets dominates the total conductivity. As seen in the figure,
the valley-polarized conductivity exceeds 80% in this configuration.
This is a consequence of the large magnitude of r , in turn a
consequence of the large in-plane anisotropy of the cyclotron mass
for each valley in bismuth.

In a wide range of temperature and magnetic field, when
the three-fold symmetry of the lattice is preserved, equation (2)
was found to be a successful fit to the data (see Supplementary
Information). This allowed us to extract the three parameters σ h,
σbin and r for each temperature and magnetic field. Figure 3b plots
the temperature dependence of r for different magnetic fields. As
seen in the figure, the peak value for r (that is ∼40) is attained in
the intermediate temperature range centred around 40K. This is
where the in-plane magnetic field is most efficient for generating
a valley-polarized current.

Below this intermediate temperature range, r decreases as the
temperature lowers. This indicates a decrease in the mobility
anisotropy below 30K. Mobility is set by the ratio of the scattering
time to the effective mass. The scattering time can also be
anisotropic and this anisotropy can be temperature dependent. In
a first approximation, its anisotropy damps the anisotropy of the
effective mass. When the field is along a bisectrix axis, the effective
mass in the perpendicular plane is lighter, but because the phase
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Figure 3 | Field-induced valley polarization across a wide temperature
range. a, Angular dependence of the contribution of each electron valley, as
well as their sum,

∑
σe, to the total conductivity, σtotal. When the field is

along a binary direction, because of the large r, one of the valleys easily
dominates the total conductivity. Moreover, the total conductivity by
electrons is much larger than the contribution of the holes. b, The
temperature dependence of r for different magnetic fields. A large r is
attained in the intermediate temperature range. For each temperature, r is
obtained by finding the best fit between the data and equation (2). Error
bars represent a window defined by the standard deviation between the fit
and the data.

space for scattering is decreased, the scattering time is longer. Below
20K, the enhancement in the anisotropy of the scattering time
decreases the anisotropy of mobility and r . This would indeed
be the case if electrons residing in each valley are scattered by
those residing in another valley through Coulomb interaction, as
initially suggested in ref. 22.

At high temperatures, r also decreases. The oscillations gradually
smear out as the thermal energy becomes comparable to the Fermi
energy (∼22meV) for the electrons10,11. Remarkably however,
in this temperature regime, a large r is gradually restored
as the magnetic field increases. This indicates that orbital
magnetoresistance can become an effective valley valve, even when
the system exits the degenerate Fermi regime, provided that the
magnetic length ("B = √

h̄/eB) becomes shorter than the thermal
de Broglie length (λ= h/

√
2πm∗kBT ). This interesting regime has

been poorly studied and deserves further exploration.
The findings reported above show that, in the presence of

anisotropic dispersion, the orbital magnetoresistance can tune
the contribution of different valleys to the total conductivity. In
multi-valley systems with modest mass anisotropy such as Si(111)
or AlAs or on the (111) surface of bismuth itself25, this effect can
be used to inject a valley-polarized flow into the two-dimensional
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Figure 2 | The contribution of different components of the Fermi surface
to the total conductivity in polar coordinates. a, Polar representation of the
angular dependence of resistivity at B=0.5T and T=40K. b, Polar plot of
charge conductivity (red line) according to the experimental data
compared to a three-parameter fit (black line) following equation (2). The
contribution of each electron pocket (e1–e3) as well as the hole pocket (h)
to the total conductivity is also plotted.

it is oriented along a binary axis, one of the three electron
pockets dominates the total conductivity. As seen in the figure,
the valley-polarized conductivity exceeds 80% in this configuration.
This is a consequence of the large magnitude of r , in turn a
consequence of the large in-plane anisotropy of the cyclotron mass
for each valley in bismuth.

In a wide range of temperature and magnetic field, when
the three-fold symmetry of the lattice is preserved, equation (2)
was found to be a successful fit to the data (see Supplementary
Information). This allowed us to extract the three parameters σ h,
σbin and r for each temperature and magnetic field. Figure 3b plots
the temperature dependence of r for different magnetic fields. As
seen in the figure, the peak value for r (that is ∼40) is attained in
the intermediate temperature range centred around 40K. This is
where the in-plane magnetic field is most efficient for generating
a valley-polarized current.

Below this intermediate temperature range, r decreases as the
temperature lowers. This indicates a decrease in the mobility
anisotropy below 30K. Mobility is set by the ratio of the scattering
time to the effective mass. The scattering time can also be
anisotropic and this anisotropy can be temperature dependent. In
a first approximation, its anisotropy damps the anisotropy of the
effective mass. When the field is along a bisectrix axis, the effective
mass in the perpendicular plane is lighter, but because the phase
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range. a, Angular dependence of the contribution of each electron valley, as
well as their sum,

∑
σe, to the total conductivity, σtotal. When the field is

along a binary direction, because of the large r, one of the valleys easily
dominates the total conductivity. Moreover, the total conductivity by
electrons is much larger than the contribution of the holes. b, The
temperature dependence of r for different magnetic fields. A large r is
attained in the intermediate temperature range. For each temperature, r is
obtained by finding the best fit between the data and equation (2). Error
bars represent a window defined by the standard deviation between the fit
and the data.

space for scattering is decreased, the scattering time is longer. Below
20K, the enhancement in the anisotropy of the scattering time
decreases the anisotropy of mobility and r . This would indeed
be the case if electrons residing in each valley are scattered by
those residing in another valley through Coulomb interaction, as
initially suggested in ref. 22.

At high temperatures, r also decreases. The oscillations gradually
smear out as the thermal energy becomes comparable to the Fermi
energy (∼22meV) for the electrons10,11. Remarkably however,
in this temperature regime, a large r is gradually restored
as the magnetic field increases. This indicates that orbital
magnetoresistance can become an effective valley valve, even when
the system exits the degenerate Fermi regime, provided that the
magnetic length ("B = √

h̄/eB) becomes shorter than the thermal
de Broglie length (λ= h/

√
2πm∗kBT ). This interesting regime has

been poorly studied and deserves further exploration.
The findings reported above show that, in the presence of

anisotropic dispersion, the orbital magnetoresistance can tune
the contribution of different valleys to the total conductivity. In
multi-valley systems with modest mass anisotropy such as Si(111)
or AlAs or on the (111) surface of bismuth itself25, this effect can
be used to inject a valley-polarized flow into the two-dimensional
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Figure 4 | Spontaneous loss of three-fold symmetry by lowering the temperature or increasing the magnetic field. a, Polar representation of the angular
dependence of the magnetoresistance at a fixed temperature (T= 10 K) for different fields. At low fields the three-fold symmetry of the lattice combined
with the inversion symmetry generates a six-fold rotational symmetry. As the magnetic field increases, ρzz(φ) loses the three-fold rotational symmetry of
the underlying lattice. b, The same as in a, but for a fixed field (B=0.5T) at different temperatures. As the temperature decreases the three-fold rotational
symmetry is lost.
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Figure 5 |Magnetoresistance data with rotation in two perpendicular planes. a, Colour plot of ρ(θ ,φ)/ρmax at T= 30K and B=0.5T. Here θ is the angle
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c, Colour plot of the data for T= 1.5K and B=0.5T. d, Stereographic representation of the low-temperature data. The three valleys cease to be equivalent
at low temperatures.
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tipp: valley-nematic ordering
#valley > 1, 

anizotrop diszperzió, 
Coulomb-kcsh 

[Abanin et al., PRB 82 035428, (2010)]
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