

Si/Ge self-assembled quantum dots

Zoltán Scherübl BUTE Nanophysics Seminar Lecture 01.12.2011.

Why Si/Ge QD?

<u>Advantages:</u>

Low cost nanoelectronics: SemiC NW, CNT, etc.

But how to integrate to mainstream silicon technology?

Ability to form ideal contact with metals (SC-SemiC appl.) Potential for long spin coherence time (Spintronics) Strong spin-orbit (SO) coupling for p-type Large modulations, anisotropies in g-factor (electronically controlled spin precession)

2D qubit architecture (contrary to Ge/Si core/shell NW)

Fabrication

<u>Silicon-on-insulator (SOI) substrate (gate control):</u>

40 nm undoped Si 65 nm SiO2 Degenerately doped Si substrate

<u>Stranski-Krastanow growth by MBE:</u> HF etching 100 nm Si buffer @620°C, 0.1 nm/s 5s interruption 7 monolayer Ge @620°C 0.04 layer/s 2 nm Si cap @300°C

<u>Ordering</u>: 2D array of holes by EBL and CHF_3/O_2 plasma

Fabrication, Basic parameters

Contacting:

4 step of EBL, e-beam evap. ... (Ti/Au pads) 20 nm Al electrode pairs, 10-50 nm gap

Typical devices: Monocrystallin, dome-shaped Height: 22±0.8 nm Base diameter: AFM: 96±2 nm SEM: 80 nm P-type (holes) Resistance: 10⁴-10⁵ Ohm (lowest: ~25.8 kOhm)

<u>Measurements:</u> @15mK

Single-hole supercurrent transistor

Normal Coulomb-peaks: Wide peaks, finite valley conductance

- \rightarrow strong coupling to the electrodes
- \rightarrow Coopair-tunneling @SC phase

Black region: zero voltage drop on the QD Blue line: switching form Josephson current to dissipative current (Critical current: ~10² pA) Green line: No non dissipative current

→ Switch the device On/Off by gate voltage

G-factor in $Si_{x}Ge_{1-x}$ materials

Bulk: 4-fold degenarcy (LH, HH) @<u>k</u>=0 QD: deg. lifted by strain or confinement In selfassembled nanocrystals: compressing strain, HH has lower energy

HH g-factor: g_{per}=6κ, g_{par}≈0
LH g-factor: g_{par}=4κ, g_{per}=2к
K: Luttinger valence-band parameter (Si: к=0.42, Ge к=-3.37)
Alloys: κ has intermediate values
60-80% Ge: -0.308 - -1.153
40% Ge: 0.019
20% Ge: 0.131
(these samples: 50-75% Ge)

In QD: confinement \rightarrow mixing of HH and LH states

Anisotropy of g-factor I

Weak coupling to leads, high resistance Increasing charge energy (by V_g) \rightarrow decrease in coupling <u>Rightmost diamond</u>: in magnetic field \rightarrow anisotrop g-factor: g_{per} =1.21, g_{par} =2.71 Lowering VG \rightarrow stronger coupling \rightarrow larger QD level broadening \rightarrow uncertainty

Anisotropy of g-factor II

Inelastic cotunneling spectroscopy:

Anisotropy in critical field: (paralel: 650 mT, perpendicular: 50 mT) Angle depencence @3T:

Minimum not @15-20°

Almost identical offset in diamonds

Other device with min @0°

Asymemetric overlap with the leads a

More holes \rightarrow more extended wavefunction (to Si-rich base) \rightarrow lower g Weaker dependence on V_c, than on diamond_ L_{E_c}

G-factor linked to the orb. wavefunc. Small nonlinearity is Zeeman-energy

0.18

Spin-orbit interaction

Indirect evidences:

G-factor deviation from free-particle value

Nonlinearities is Zeeman-effect

Measurement: device with small level spacing, strong tunnel coupling

Inelastic cotunneling spectroscopy

Spin-orbit interaction

<u>Blue:</u> ground state: singlet, 3 lines: triplet excitations (even # of holes) Zero-field singlet-triplett splitting: 130 µeV @2T: anticrossing between: $|0,0\rangle$ and $|1,1\rangle \rightarrow SO$ coupling: Parallel field: Δ_{so} =34 µeV (one order smaller than in InAs or InSb) Perpendicular field: Δ_{so} =42 µeV

Spin-orbit interaction

<u>Red:</u> (odd # of holes) two subsequent orbital (zf energy diff: 300 µeV) Field-induced decrease in orb. splitting, diff. g-factor for diff. orb. Anticrossing: $(B_{||}=2.6 \text{ T between } |\downarrow\rangle_n$ and $|\uparrow\rangle_{n+1} \rightarrow \Delta_{s0}=37 \text{ µeV}$

 OB_{per} =1.5T it vanishes \rightarrow longer spin relaxation time

Blue and green anticrossing: could anticross in the absence of SOI too

Spin selective tunneling

Coulomb blockade regime \rightarrow Second order cotunneling Different tunnel rates for Zeeman levels: $\Gamma = \pi v |t|^2$

QD w/o SOI w/ FM electrodes: Origin: DOS (v) in the leads

QD w/ SOI w/ N electrodes: Γ is spin dependent in B field $\rightarrow \Gamma_{\uparrow}^{L}\Gamma_{\downarrow}^{R} \neq \Gamma_{\uparrow}^{R}\Gamma_{\downarrow}^{L}$ G(V) is expected to be asymmetric w/o B \rightarrow no spin selectivity expected

Measurement

Odd # of holes, finite G @V=0 \rightarrow spin-1/2 Kondo

In B field: Kondo peaks splits up

Perpendicular B: asymmetric G(V) for $|eV| > E_{Zeeman}$

 $B_{..} = 0$

 $B_{z}(T)$

Rotating 3T field:

0.2 (a)

0

30 60

< 0.1

Angle dependent g-factor Asymmetry parameter:

 $A = \left| \frac{G_{-} - G_{+}}{G_{-} + G_{+}} \right| a hol \quad G_{\pm} = G(\pm E_{Z}/e)$

A has min @ 0,180°, max = 0.2 Asymmetry increases with B_

(b)

0.2

◄ 0.

 $B_7^2 + B_0^2 = 3T$

90 120 150 180

θ (°)

Other device

No Kondo-effect, weaker coupling to the leads Min g-factor @15-20°, but here is no asymmetry The plane of wavefunction may not parallel to the substrate A has a greater maximum (0.35-0.4)

References

Katsaros et. al. Hybrid superconductor devices made from self-assembled SiGe nanocrystals on silicon, Nature Nanotechnology **5**, 458-464 (2010)

Katsaros et al. Observation of spin-selective tunneling is SiGe nanocrystals, http://arxiv.org/abs/1107.3919v1