Recent advances in InAs nanodevices

Gergő Fülöp NanoSeminar Lecture 22/09/2011

Outline

- Fabry-Pérot conductance oscillations
 - Multi-mode Fabry-Pérot conductance oscillations in suspended stacking-faults-free InAs nanowires (Kretinin et al., http://arxiv.org/abs/1005.0229v2)

• The g-factor in InAs nanowires

 Field Tuning the G-Factor in InAs Nanowire Double Quantum Dots (Schroer et al., http://arxiv.org/abs/1105.1462)

SOI in InAs quantum dots

- Electrically tuned spin-orbit interaction in an InAs self-assembled quantum dot (Tarucha et al., 10.1038/nnano.2011.103)
- Spin-orbit qubit in a semiconductor nanowire (Nadj-Perge et al., 10.1038/nature09682)

• Suspended InAs nanowire resonator

 High Q electromechanics with InAs nanowire quantum dots (Solanki et al. http://arxiv.org/abs/1108.3255, supplementary material: http://www.tifr.res.in/~nano)

- VLS MBE grown InAs NWs
 - diameter: 50-60 nm
 - length: 4-5 μ m
 - "stacking-fault-free", pure wurtzite(bulk InAs: zinc-blende structure)
- Device fabrication
 - chemically etched grooves
 - -local backgate evaporation
 - -NW deposition, etc.

Measurements

- charging energy: $\epsilon_c \approx 3 \text{ meV}$
- gate capacitance: $C_g = e/\Delta V_g^{CB} \approx 1.6 aF$
- Kondo effect (at $V_g \approx -8.6 \text{ V}$)
 - strong coupling
- NW length: 470 nm

Measurements

 not Coulomb blockade oscillations (transport through second 1D subband)

Fabry-Pérot oscillations

• explanation: electrons are reflected only from the precontact areas

• Measurements

- Analogy in optics: Fabry-Pérot interferometer
 - transparent plate
 - multiple reflections at the boundaries
 - sharp peaks in the transmission spectrum

http://en.wikipedia.org/wiki/Fabry-Perot_interferometer

• Fabry-Pérot interference

- Single channel: constructive interference for

$$k_{\rm F}2L = 2\pi n$$
 $\Box > \mu = E_{\rm F} - E_{\rm i} = \frac{\hbar^2 k_{\rm F}^2}{2m^*} = \frac{\hbar^2 \pi^2 n^2}{2m^* L^2}$

- tuning: $\mu \propto \alpha V_{\rm g}$
- check:

$$\delta k_{\rm F} = \pi/L \delta n_{\rm 1D} = 2\delta k_{\rm F}/\pi = C_{\rm g}^{\rm (L)}\Delta V_{\rm g}^{\rm FP}/e$$

$$L = \frac{2e}{C_{\rm g}^{\rm (L)}\Delta V_{\rm g}^{\rm FP}}$$

$$L \approx 400 \text{ nm}$$
 (SEM: L $\approx 470 \text{ nm}$)

- Fabry-Pérot interference
 - Simple model of a multi-mode 1D transport

• S. d'Hollosy, G. Fülöp, Sz. Csonka (unpublished)

- Device
 - double QD in InAs NW with bottom gate structure
 - − InAs: strong SOI \rightarrow fast spin rotations
 - Pauli spin blockade: (1,1) triplet state; (2,0) is blocked
 - leakage current: spin-flip, cotunneling

- Measurements
 - Double QD in InAs NW with bottom gate structure
 - Pauli spin blockade: (1,1) triplet state; (2,0) is blocked
 - leakage current: spin-flip, cotunneling

Resonance condition:

$$hf = g\mu_B |\mathbf{B}|$$

Hyperfine field \rightarrow zero field peak (B_N \approx 3.3 mT)

- Measurements: anisotropy
 - one large and two smaller, equal axes
 - the large axis is different for each dots and not aligned with the NW

- Measurements: field tuning ullet
 - different (unbalanced) confinement potential

 α

1.9

8.0

В

1.8 1.9 -0.21

2.1 - 0.25

- Spin-orbit qubit in an InAs nanowire
 - bottom gate structure
 - Pauli spin blockade
 - microwave frequency driven EDSR (electric-dipole spin resonance)

Nowack et al., Science 318, 1430 (2007)

NanoLecture: Recent advances in InAs nanodevices

• Spin-orbit qubit in an InAs nanowire: EDSR

- Energy splitting: $E_Z = g\mu_B B$
- Resonance: $f_0 = g\mu_{\rm B}B/h$
- Hyperfine field: $B_{\rm N} = 0.66 \pm 0.1 \,\mathrm{mT}$
- g-factors:

$$|g_{\rm L}| = 9.2 \pm 0.1$$

 $|g_{\rm R}| = 8.9 \pm 0.1$

 \rightarrow separated addressing

- Spin-orbit qubit in an InAs nanowire: Rabi oscillations
 - coherent control over spin-orbit qubit states

- f = 13 GHz, B = 102 mT
- fitting function: $a\cos(f_{\rm R}\tau_{\rm burst} + \varphi)/\tau^d + b$
- highest Raby frequency: $f_R = 58$ MHz qubit flip: \approx 110 microwave period $f_R \propto \sqrt{P}$
- separated addressing
- T₁ >> 1 μs

Earlier: highest $f_R \approx 4.7$ MHz ($f_{ac} = 15.2$ GHz, $B \approx 3$ T)

- Electrically tuned spin-orbit interaction
 - self-assembled InAs quantum dot

200nm

• spin-1/2 Kondo effect

- Ti/Al (5/100 nm)
- charging energy: $U \approx 1.4 2.7 \text{ meV}$
- level spacing: $\epsilon_d \approx 0.3 0.7 \text{ meV}$

- Electrically tuned spin-orbit interaction
 - evaluation of SOI energy: splitting of the Kondo peak

NanoLecture: Recent advances in InAs nanodevices

- Electrically tuned spin-orbit interaction
 - electrical tunability of the SOI energy

 non-equilibrium transport measurements: two peaks in the energy spectrum at

$$eV_{\rm sd}\!=\!\pm 2\Delta$$

- Electrically tuned spin-orbit interaction
 - electrical tunability of the SOI energy

 non-equilibrium transport measurements: two peaks in the energy spectrum at

$$eV_{\rm sd} = \pm 2\Delta$$

NanoLecture: Recent advances in InAs nanodevices

- Electrically tuned spin-orbit interaction
 - electrical tunability of the SOI energy

- effect of V_G (and V_{sg}) varies with the orbital states
- Δ ≈ 50..150 μeV

- Electrically tuned spin-orbit interaction
 - in-plane anisotropy of the SOI energy
 - $\Delta = |\langle a \uparrow | \mathcal{H}_{\text{SOI}} | b \downarrow \rangle| = |\langle a \uparrow | \lambda \mathbf{E} \cdot (\mathbf{p} \times \boldsymbol{\sigma}) | b \downarrow \rangle|$

- 2D: quenching of Δ at a 'magic angle': B_{ext} || B_{SOI}/i
- lack of quenching \rightarrow 3D quantum dot

$$\mathbf{B}_{\mathrm{SOI}} = \lambda \mathbf{E} \times \mathbf{Q}$$
$$\mathbf{Q} = \langle a | \mathbf{p} | b \rangle$$

NanoLecture: Recent advances in InAs nanodevices

- Sample fabrication
 - VLS MOCVD grown NWs; diameter: 80-120 nm, length: ≈8 µm
 - suspending the NWs: sandwiching them between layers of e-beam resist

- Measurements
 - Heterodyne mixing technique:
 - AC voltage on backgate actuating the NW (ω)
 - AC voltage on the source for mixing (ω + $\Delta\omega$)

InAs nanowire resonator

- Measurements
 - Heterodyne mixing technique:

Mixing current: $I_{mix} = \frac{dG}{dV_g}(A\xi_f + B)$

 ξ_f : amplitude of oscillation Gate voltage tunes:

- the tension
- the carrier density

InAs nanowire resonator

- Measurements
 - Heterodyne mixing technique:

Mixing current: $I_{mix} = \frac{dG}{dV_g}(A\xi_f + B)$

 ξ_f : amplitude of oscillation Gate voltage tunes:

- the tension
- the carrier density

T = 5 K

• contraction \rightarrow tension varies

InAs nanowire resonator

- Measurements
 - Heterodyne mixing technique:

Mixing current: $I_{mix} = \frac{dG}{dV_g}(A\xi_f + B)$

 ξ_f : amplitude of oscillation Gate voltage tunes:

- the tension
- the carrier density

T = 5 K

• contraction \rightarrow tension varies

- Measurements
 - Coulomb blockade physics at mechanical resonance
 - Rectification technique:
 - single RF source at back gate

- Measurements
 - Coulomb blockade physics at mechanical resonance

- Coulomb peaks broaden
- Magnitude of CB peaks is altered
 - direct coupling of dot potential to the backgate voltage
 - modification of dot potential due to mechanical motion

Fano resonance

 $N(t) = C_g(t)V_g(t)/e = N_0 + \delta N(t),$ $G_{total} = G_0 + G_{rect} \simeq G_0 + \frac{1}{2}\frac{d^2G}{dN^2}\overline{(\delta N(t))^2}$

- Measurements
 - Coulomb blockade physics at mechanical resonance

$$G_{rect}(\tilde{\omega}) = G_D \frac{|\tilde{\omega} + q_x + iq_y|^2}{\tilde{\omega}^2 + 1} \qquad q_x = -\left(\frac{1}{C_0}\frac{dC}{dz}\right)\left(V_0\frac{dF}{dV_g}\right)\frac{Q}{k_{osc}}$$

$$G_D = \frac{1}{2}\frac{d^2G}{dN^2}\left(\frac{C_0}{e}\right)^2|V_{ac}|^2$$
Right at a CB peak Q reduces to 10³

$$q_y = 1$$

- Measurements
 - Coulomb blockade physics at mechanical resonance
 - FM modulation technique

Thank you for your attention!