Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes

Ferry Prins§, † Amelia Barreiro§, † Justus W. Ruitenberg, † Johannes S. Seldenthuis, † Núria Aliaga-Alcalde, † Lieven M. K. Vandersypen, † and Herre S. J. van der Zant†

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, The Netherlands, and ICREA, Institució Catalana de Recerca i Estudis Avançats, Departament de Química Inorgànica, Universitat de BaDelftrcelona, Martí i Frances 1-11, 08028 Barcelona, Spain

Motivation:

http://xxx.lanl.gov/abs/1110.2335

• Gateable molecular junctions (Au, Pt – no gated transport)
• (sp2-)carbon-based materials, covalent bond-structure
 → stability @ RT
 → large variety (thiol and amine linkage, π-π stacking interaction)
• Thin electrodes, reduced screening of the applied gate-field
• Conductance is largely gate-independent (not like SLG, CNT)
 → features from the contacted molecule

Few-layer graphene (FLG) electrodes:

• Stoch tape - EBL - oxygen-plasma etching, Cr/Au → gap-size >10nm
• AFM nanolithography
• Nanoparticles catalyzed anisotropic etch
• ...
• Feedback-controlled electroburning
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes

Sample fabrication using feedback-controlled electroburning (FDE):

• Starts from 3-18nm thin graphene flakes deposited using stoch tape technique
• Cr/Au electrodes
• FDE@RT:
 • Related to the chemical reaction of C and O

1. Voltage (V) ramp applied (1V/s), while current (I) monitored w/ high frequency (200ums)
2. $\Delta G/G / 200mV > 10\% \rightarrow V$ swept back to 0V in 10ms
3. goto 1.
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes

Sample fabrication using feedback-controlled electroburning (FDE):

- Starts from 3-18nm thin graphene flakes deposited using stoch tape technique
- Cr/Au electrodes
- FDE@RT:
 - Related to the chemical reaction of C and O

1. Voltage (V) ramp applied (1V/s), while current (I) monitored w/ high frequency (200ums)
2. $\Delta G/G / 200mV > ? 10\% \rightarrow V$ swepted back to 0V in 10ms
3. goto 1.

- Critical current density 5.3×10^7 A/cm2
- Gap \sim1-2nm, height 12nm (35layer) remains
- 200Ω-$3k\Omega \rightarrow 500\Omega$-$10G\Omega$
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes

AFM characterization is difficult
→ I-V curves, single barrier

SIMMONS model:
• Barrier height → 1-2nm
• Gap size → 0.92eV
• Bias-Voltage response → -0.35

→ Stable for weeks
→ Absence of gate-dependence

→ Can be used for the characterization of small molecules
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes

Anthracene-functionalized curcuminoid molecules deposited:

1,7-(di-9-anthracene)-1,7 heptadiene-3,5-diene
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes

Anthracene-functionalized curcuminoid molecules deposited:

\[1,7-(\text{di-9-anthracene})-1,7 \text{heptadiene-3,5-diene} \]
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes

- Gateable molecular junctions
- Thin electrodes, reduced screening of the applied gate-field
- Conductance is largely gate-independent (not like SLG, CNT)
 → features from the contacted molecule
- (sp2-)carbon-based materials, covalent bond-structure
- Sample fabrication using feedback-controlled electroburning (FDE):
 → stability @ RT
 → large variety (thiol and amine linkage, π-π stacking interaction)

Anthracene-functionalized curcuminoid molecules deposited:

1,7-(di-9-anthracene)-1,7 heptadiene-3,5-diene