Superconducting quantum bits

Qubit = quantum mechanical two level system

DiVincenzo criteria for quantum computation:

- **1.** Register of 2-level systems (qubits), $n = 2^{N}$ states: eg. |101..01> (N qubits)
- **2.** Initialization: e.g. setting it to |000..00>
- **3.** Tools for manipulation: 1- and 2-qubit gates, e.g. Hadamard gates: $U_{\mu}|0\rangle = (|0\rangle + |1\rangle)/2$, and CNOT gates to create entangled states, $U_{CNOT}U_{H}|00>=(|00>+|11>)/2$
- **4.** Read-out : $|\psi\rangle = a|0\rangle + be^{i\Phi}|1\rangle \rightarrow a, b$
- **5.** Long decoherence times: $> 10^4$ 2-qubit gate operations needed for error correction to maintain coherence "forever".

6. Transport gubits and to transfer entanglement between different coherent systems (guantumquantum interfaces).

7. Create classical-quantum interfaces for control, readout and information storage.

Two level system (quasi-spin)

Representation : Bloch sphere

Qubits

N-qubit states

$$|\psi\rangle = |\psi_1\rangle |\psi_2\rangle \dots |\psi_N\rangle = |\psi_1\psi_2\dots\psi_N\rangle$$
$$|\psi\rangle = c_1|0\dots00\rangle + c_2|0\dots01\rangle + \dots + c_n|1\dots11\rangle$$

Gates: Unitary operators

All operations are possible with one-qubit and one two-qubit gates e.g. CNOT: first control bit, second not

$$\begin{array}{l} |0\rangle |0\rangle \to |0\rangle |0\rangle \\ |0\rangle |1\rangle \to |0\rangle |1\rangle \\ |1\rangle |0\rangle \to |1\rangle |1\rangle \\ |1\rangle |1\rangle \to |1\rangle |0\rangle. \end{array} \qquad \qquad U_{\text{CNOT}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

BUTE, Low temperature solid state physics laboratory

$$I = I_c \sin(\delta)$$
$$V = \frac{\Phi_0}{2\pi} \frac{d\delta}{dt}$$

Josephson equations

$$\Phi_0 = \frac{h}{2e}$$
$$I_c = \frac{\pi\Delta}{2eR_n} \tanh(\Delta/2T)$$

Applying a constant bias voltage:

$$I = I_c \sin(\delta_0 + \frac{2eVt}{\hbar})$$

An AC current with ω =2eV/ħ is flowing. The DC current averages to zero.

BUTE, Low temperature solid state physics laboratory

BUTE, Low temperature solid state physics laboratory

BUTE, Low temperature solid state physics laboratory

Josephson junctions is a *non-linear inductance* the energy spectra is anharmonic

 $I = I_c \sin(2\pi\Phi/\Phi_0)$ $L_J = \frac{\Phi_0}{2\pi I_2}$ for small Φ $\mathsf{U}_{LC}(\Phi)$ $I \simeq \frac{\Phi}{L_{II}}$ $I = \frac{\Phi_0}{2\pi L_i} \sin(2\pi \Phi/\Phi_0)$ $U_{\mu}(\Phi)$ E,LC E₃^{JJ} $H = \frac{1}{2} \frac{1}{C} p_{\Phi}^2 + \frac{(\Phi_0/(2\pi))^2}{L_1} \left(1 - \cos 2\pi \frac{\Phi}{\Phi_0} \right)$ E2 E₁^{LC} ħω_{LC} E₁ Φ/Φ_{0} qubit is separateable $-\pi$ 0 π

rf-squid

BUTE, Low temperature solid state physics laboratory

δ

For half integer quantum, two minima: two persistent current states, circulating in different direction

dc-squid

$$I = I_1 + I_2 = I_c \left[\sin(\delta_0 + 2\Phi / \hbar) + \sin(\delta_0 - 2\Phi / \hbar) \right] = 2I_c \sin \delta_0 \cos(e\Phi / \hbar)$$

If the critical current of the two qbits are the same

The maximal value of the critical current is tuned by the magnetic flux: $I_{\text{max}} = 2I_c \left| \cos(e\Phi / \hbar) \right|$

Dependence of the maximum supercurrent (critical current) through the two-junction interferometer on the total magnetic flux through its interior.

The strong dependence of Icon flux makes the DC-SQUID an **extremely sensitive flux detector**.

Cooper pair box

BUTE, Low temperature solid state physics laboratory

Electrostatic energy (like for a Qdot):

$$H_{\rm el} = E_C (N - n_g)^2$$

Jospehson energy:

$$H_J = -E_J \cos \delta$$

For two josephson junctions:

$$-E_J^{(1)}\cos(\delta-\delta_1) - E_J^{(2)}\cos(\delta-\delta_2) = -Re\left[\left(\tilde{E}_J^{(1)} + \tilde{E}_J^{(2)}\right)e^{i\delta}\right]$$

where

$$\tilde{E}_{J}^{(1,2)} = E_{J}^{(1,2)} \exp(-i\delta_{1,2})$$
$$E_{J}^{\text{eff}}(\delta_{1} - \delta_{2}) = \left|\tilde{E}_{J}^{(1)} + \tilde{E}_{J}^{(2)}\right| = \sqrt{\left(E_{J}^{(1)}\right)^{2} + \left(E_{J}^{(2)}\right)^{2} + 2\cos(\delta_{1} - \delta_{2})E_{j}^{(1)}E_{j}^{(2)}}$$

The phase difference can be tuned by applying a magnetic field. Thus the Josephson energy can be tuned

$$E_J^{\text{eff}}(\Phi) = \sqrt{\left(E_J^{(1)}\right)^2 + \left(E_J^{(2)}\right)^2 + 2\cos(2\pi\Phi/\Phi_0)E_j^{(1)}E_j^{(2)}}$$

$$\begin{array}{ll} \textit{Simplification:} & \delta << \pi \\ & E_J \cos(\delta) \to \mathrm{const} + E_J \delta^2/2 \\ & I = -I_c \delta \quad \text{using the josephson energy} \\ & \dot{I} = I_c 2e/\hbar V \longrightarrow \quad L = V/\dot{I} = \hbar/I_c 2e \quad \text{Josephson inductance} \end{array}$$

Classical equations:

Commutation relation

 $\begin{bmatrix} \hat{N}, \hat{\delta} \end{bmatrix} = \alpha$ $\hat{H} = E_J \frac{\hat{\delta}^2}{2} + E_C \frac{\hat{N}^2}{2}$

 $\alpha = -2i$

$$\frac{dN}{dt} = \frac{i}{\hbar} \left[\hat{H}, \hat{N} \right] = -\frac{i\alpha E_J}{\hbar} \hat{\varphi}$$

$$\frac{d\delta}{dt} = \frac{i}{\hbar} \left[\hat{H}, \hat{\delta} \right] = \frac{i2\alpha E_C}{\hbar} \hat{\delta}$$

$$\left| \begin{pmatrix} N^2 \end{pmatrix} \sim 1 \text{ number} \right|$$

Phase and number are conjugated variables!

Phase representation (analogue: coordinate representation)

N operator and N eigenstates: $-2i\partial/\partial\delta$ and $N \to e^{iN\delta/2}$

$$e^{i\delta}|N\rangle = |N+2\rangle$$

 $\cos(\delta) = \sum_{N} |N\rangle\langle N+2| + |N+2\rangle\langle N|$

in the other representation $\hat{N}|N\rangle = N|N\rangle$

$$H_{\rm el} = E_C \sum_{N} (N - N_g)^2 |N\rangle \langle |N|$$
$$H_J = -\frac{E_J}{2} \sum_{N} (|N\rangle \langle N + 2| + |N + 2\rangle \langle N|)$$

transfer of Cooper pairs

For $E_J \ll E_C$

The charging energy states are degenerate at the crossing point:

E_J makes a transition and lifts the degeneracy:

The charge qubit near the degeneracy point

$$\hat{H} = E_C + \begin{pmatrix} \varepsilon & E_J/2 \\ E_J/2 & -\varepsilon \end{pmatrix}$$

where : $\varepsilon = 2E_C(1 - N_G)$

 E_J

At the degeneracy point the eigenstates are trivial: $|\pm\rangle=(|0\rangle\pm|2\rangle)/\sqrt{2}$

Far from the degeneracy points the original states are good eigenstates.

Higher order coupling through EJ are negligible

Charge qbit

BUTE, Low temperature solid state physics laboratory

- First the qubit is prepared in state |0>
- Fast DC pulse to the gate \rightarrow not adiabatic, it remains in |0>
- It starts Rabi-oscillating, and evolves during the pulse length (t)
- If after the pulse, the qubit is in |1> it will relax back and the current is detected (high repetition frequency) **single shot readout**

Detection: working point for state 1 is above delta in energy
 →decay to quasi particles

- By adjusting t, the length of the pulse Rabi oscillation is seen
- DC gate is need to calibrate the pulse gate
- Relaxation <10ns, probably due to charge fluctuations

Y. Nakamura et al., Nature, 398, 786 (1999)

Rabi oscillations

BUTE, Low temperature solid state physics laboratory

Oscillations for not energy eigenstates

Special case: Spin 1/2 in magnetic field

If a=1/2 and b=1/2, the oscillation is maximal (spin precesses in the x-y plane)

Other readout for charge qbit: with SET

Larmor precession

 $\frac{d\mu}{dt} = \mu \times (\gamma H_0)$ where the larmor frequency is: $\omega_L = \gamma H_0$

Adding a small modulating field

$$H(t) = (H_1 \cos(\omega t), H_1 \sin(\omega t), H_0)$$

In rotating frame with angular moment $(0,0,\omega)$, H_1 is static: $H_1'=(H_1, 0, 0)$

$$\frac{\delta\mu}{\delta t} = \mu \times \gamma [(H_0 + \omega/\gamma)\hat{z}' + H_1\hat{x}']$$

If $\omega = \omega_L$, than the magnetic moment will precess around H_1' With short pulses, the moment can be rotated with arbitrary angle E.g. $\pi/2$ pulse rotates to y' axis, a precession in the x-y plane in the lab frame

1)

Relaxation – Bloch equations

$$\frac{dM_{x,y}}{dt} = \gamma [\mu \times H_0]_{x,y} - \frac{M_{x,y}}{T_2} \qquad \omega_L = \gamma H_0$$

T₂ – decoherence time (spin-spin in NMR)

The time until a superposition preserves its phase

In NMR lot of spins, which precess with different larmor frequency, and the net spin disappears

Quantronium

BUTE, Low temperature solid state physics laboratory

-charge qubits operated at the degeneracy point are not sensitive to *charge* fluctuations (2nd order) but to *phase* fluctuations
- for charge-flux qubit there is also a sweet spot in the flux-charge plain (Quantronium)

Quantronium is operated at the sweet point, where $I_b=0$. Except the sweet point a net supercurrent flows, the direction depending on the state Another, more transparent Josephson junction, with large E_J is added For readout I_b is applied such, that $I_b+I_0<I_c$, but $I_b+I_1>I_c$, and finite voltage is measured

Quantronium

BUTE, Low temperature solid state physics laboratory

Rabi oscillations ^(%) 4⁵ 4⁶ 4⁶ 4⁷ 4⁷ 4⁹ 4⁹

Rotation for τ time, drive between the two states \rightarrow after the rotation measurement Decay of oscillations go with T_{Rabi} Frequency depends on the microwave power **Ramsey oscillations**

after free precession, $\pi/2$ rotates up or down, depending on the acquired phase T2 follows from the decay of the oscillation

Quantronium

BUTE, Low temperature solid state physics laboratory

Tune the potential of a sing JJ (washboard potential) , such, that it is asymmetric and only houses 2-3 levels $E_c << E_J$, $I < I_c$

Operation:

- Prepare eg. to state 1

Readout:

change I_c, such that 1 can tunnel out →
 finite voltage appears on the junction
 or swap 1-2, and 2 can tunnel out

Rabi oscillations etc...

a bit different design (flux controlled phase qbit)

Phase qubit

BUTE, Low temperature solid state physics laboratory

Coupled phase qubits

Escape probability is measured

 I_{b1} is fix, f is fix and I_{b2} is tuned For fix f, I_{b2} will tune the coupled levels, and for some I_{b2} the condition is fulfilled

On the $f-l_{b2}$ map avoided crossing is seen \rightarrow coupling

Capacitive coupling

The levels (splitting) of the single qubits are tunable
If the level spacing is nearly the same than the states of the two qubits hybridize

-First three levels |00>, |01> - |10> and |01> + |10>

Phase qubit

BUTE, Low temperature solid state physics laboratory

Readout of both qubits at the same time Qbits are brought to resonance At resonance |01> and |10> are not eigenstates Prepare |00>, than excite qbit1 \rightarrow |10>This is not an eigenstate and start to precess Measurement of the two qubits is anticorrelated Coherence time is the same as for single qubit

 $|\psi(t)\rangle = \cos(St/2\hbar)|10\rangle + i\sin(St/2\hbar)|01\rangle$

 $H_{int} = S/2(|10\rangle\langle 01|\rangle|01\rangle\langle 10|)$

At t=hbar/2S, |10> goes to i| 01> \rightarrow iSwap

$$U(\hbar/2S) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 1 & 0 & i & 0\\ 0 & i & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Flux qbit

BUTE, Low temperature solid state physics laboratory

 $U(\delta) = E_J(1 - \cos(\delta)) + E_L(\delta - \Phi)^2/2$ ~ $E_L(-\varepsilon \tilde{\delta}^2/2 - f \tilde{\delta} + (1 + \varepsilon)/24 \tilde{\delta}^4)$ where $\tilde{\delta} = \delta - \pi$ $f = \Phi - \pi$

$$\hat{H} = -1/2(\epsilon\sigma_z + \Delta\sigma_x)$$
 $\varepsilon = E_J/E_L - 1 << 1$
 $\epsilon = E_r - E_l$

potential for half integer flux bias

Two wells \rightarrow two levels – for symmetric potential degenerate flux states The two states have opposite persistent current

If tunneling in switched on (Δ), states hybridize and the macroscopic tunneling determines the separation

Hard to fabricate, big loop is needed for inductance matching (big decoherence) \rightarrow 3 JJ-s qbit

Flux qubit

BUTE, Low temperature solid state physics laboratory

The current as a function of the flux Away from half flux quanta, pure flux states

Detection – by DC squid measuring the opposite supercurrents

Caspar H. van der Wal et al., Science 290 (2000)

During the sweeping of the magnetic field, microwave applied

- the resonance seen for different frequencies at different flux points

- peaks indicate switching between flux states
- the spectra is nicely reproduced

Caspar H. van der Wal et al., Science 290 (2000)

C-NOT with coupled flux qubits

BUTE, Low temperature solid state physics laboratory

11

10

01

00

If control qubit is 1, it flips the target qubit here, the first qubit is the control qubit, $|10\rangle \rightarrow |11\rangle$ and $|10\rangle \rightarrow |11\rangle$

$$0\rangle = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, |01\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, |10\rangle = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, |11\rangle = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

Qubits are operated far from the degeneracy point *Main idea:* If one of the qubits manipulated, e.g.. qubit 1 is excited, the change of the persistent current will change the resonance frequency of qubit 2 Oubit1 - Control Oubit2 - Target

Qubit1= Control, Qubit2=Target

states $0_{C}0_{T}$, $0_{C}1_{T}$, $1_{C}0_{T}$, $1_{C}1_{T}$

Using microwave pulses for rotations (its phase determines the axes)

$$R_{1_C0_T-1_C1_T}(\omega,\tau) =$$

With this rotation qubit 1 controlled CNOT
is realized (almost, but phase can be easily
shifted)

J. H. Plantenberg et al., NATURE 447 (2007)

C-NOT with coupled flux qubits

BUTE, Low temperature solid state physics laboratory

- preparation of state

- CNOT

- measurement of qubit states

e.g. first rotation prepares from $|00> \rightarrow a|00>+b|10>$ than the CNOT is only resonant for |10> $|10> \rightarrow |11>$

00>→00>

With other preparation sequence other 2 relations From readout P_{00} and P_{10} ... can be determined

J. H. Plantenberg et al., NATURE 447 (2007)

Summary

BUTE, Low temperature solid state physics laboratory

	Charge	Charge-flux	Flux	Phase	Superconducting Circuits and Quantum Information
$E_{\rm J}/E_{\rm c}$	0.1	1	10	106	J. Q. You and Franco Nori Phys. Today 58(11), 42 (2005) Superconducting Quantum Circuits, Qubits and Computing G. Wendin and V.S. Shumeiko arXiv:cond-mat/0508729v1
v ₀₁	10 GHz	20 GHz	10 GHz	10 GHz	
<i>T</i> ₁	1–10 μs	1–10 μs	1–10 μs	1–10 μs	
<i>T</i> ₂	0.1–1 μs	0.1–1 μs	1–10 μs	0.1–1 μs	

 $E_{j}\gg E_{c} \qquad \qquad E_{j}\geq 10E_{c} \qquad \qquad E_{j}\approx E_{c} \qquad \qquad E_{j}\ll E_{c}$