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Qubit = quantum mechanical two level system

DiVincenzo criteria for quantum computation:

1. Register of 2-level systems (qubits), n = 2N states: eg. |101..01> (N qubits)
2. Initialization: e.g. setting it to |000..00>
3. Tools for manipulation: 1- and 2-qubit gates, e.g. Hadamard gates: UH|0> = (|0> + |1>)/2,
and CNOT gates to create entangled states, UCNOTUH|00 >=(|00> + |11>)/2 
4. Read-out : |ψ> = a|0> + bei|1> → a, b
5. Long decoherence times: > 104 2-qubit gate operations needed for error correction to maintain 
coherence ”forever”.
6. Transport qubits and to transfer entanglement between different coherent systems (quantum-
quantum interfaces). 
7. Create classical-quantum interfaces for control, readout and information storage.

Two level system (quasi-spin)

basis, general state by rotation:

Representation : Bloch sphere
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All operations are possible with one-qubit and one two-qubit gates
e.g. CNOT: first control bit, second not

Gates: Unitary operators

N-qubit states
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Josephson equations
S1 S2I

I

eV

2

-2

Voltage biased junction:

eV2

()

Applying a constant bias voltage:

An AC current with =2eV/ħ is flowing. 
The DC current averages to zero.
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Equation of motion

potential

I

„washboard potential”

S1 S2I

plasma oscillations
for I>Ic DC voltage appears
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S1 S2I

Current biased junction:
Switching at the critical current!
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overdamped
small R and C

underdamped
large R and C

keeps sliding due to kinetic energy
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Josephson junctions is a non-linear inductance
the energy spectra is anharmonic

for small 

resonant circuit

qubit is separateable
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 BA

1 Equation of motion

potential

integer bias flux

half-integer bias flux

For half integer quantum, two minima:
two persistent current states, circulating in different direction



U
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BA
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2



       /cossin2/2sin/2sin 00021  eIIIII cc 

If the critical current of the two qbits are the same
The maximal value of the critical current is tuned by the magnetic flux:  /cos2max  eII c

Dependence of the maximum supercurrent (critical current) through the two-junction 
interferometer on the total magnetic flux through its interior.

The strong dependence of Icon flux makes the DC-SQUID an extremely sensitive flux detector.
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Jospehson energy:

Electrostatic energy (like for a Qdot):

For two josephson junctions:

where

The phase difference can be tuned by applying a magnetic field. 
Thus the Josephson energy can be tuned
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Simplification:

using the josephson energy

Josephson inductance

Classical equations:

Commutation relation

Phase and number are conjugated variables!
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Phase representation (analogue: coordinate representation)

N operator and N eigenstates: and

in the other representation

transfer of Cooper pairs
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0-2 2

For EJ << EC

The charging energy states are degenerate  at 
the crossing point: 
EJ makes a transition and lifts the degeneracy:

The charge qubit near the degeneracy point

where :

At the degeneracy point the eigenstates are trivial:

Far from the degeneracy points the original states are 
good eigenstates.

Higher order coupling through EJ are negligible
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Y. Nakamura et al., Nature, 398, 786 (1999)

• First the qubit is prepared in state |0>
• Fast DC pulse to the gate  not adiabatic, it remains in |0>
• It starts Rabi-oscillating, and evolves during the pulse length (t)

• If after the pulse, the qubit is in |1>  it will relax back and the 
current is detected (high repetition frequency) – single shot 
readout
• Detection: working point for state 1 is above delta in energy
decay to quasi particles

• By adjusting t, the length of the pulse Rabi oscillation is seen
• DC gate is need to calibrate the pulse gate
• Relaxation <10ns, probably due to charge fluctuations
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Special case: Spin ½ in magnetic field
If a=1/2 and b=1/2, the oscillation is maximal (spin precesses in the x-y plane)

Oscillations for not energy eigenstates
energy eigenstates

R is Rabi frequency:
R=E+-E-

Probability of being in state (1,0) will oscillate in time

Other readout for charge qbit: with SET
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Adding a small modulating field

In rotating frame with angular moment (0,0,) , H1 is static: H1’=(H1, 0 , 0)

If L, than the magnetic moment will precess around H1’
With short pulses, the moment can be rotated with arbitrary angle
E.g. /2 pulse rotates to y’ axis, a precession in the x-y plane in the lab 
frame

Larmor precession

where the larmor frequency is:



BUTE, Low temperature 
solid state physics laboratoryRelaxation - T1 and T2

T1 (spin-lattice in NMR)

T2 – decoherence time (spin-spin in NMR)

T1

The time until a superposition preserves its phase
In NMR lot of spins, which precess with different larmor frequency, and the net spin disappears

Relaxation – Bloch equations
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-charge qubits operated at the degeneracy point are not sensitive 
to charge fluctuations (2nd order) but to phase fluctuations
- for charge-flux qubit there is also a sweet spot in the flux-charge 
plain (Quantronium)

Quantronium is operated at the sweet point, where Ib=0. 
Except the sweet point a net supercurrent flows, the direction depending on the state
Another, more transparent Josephson junction, with large EJ is added
For readout Ib is applied such, that Ib+I0<Ic, but Ib+I1>Ic, and finite voltage is measured

D. Vion et al., Science 296 (2002)
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Rabi oscillations Ramsey oscillations

after free precession, /2 rotates up or 
down, depending on the acquired phase
T2 follows from the decay of the oscillation

Rotation for  time, drive between the two states 
 after the rotation measurement
Decay of oscillations go with TRabi
Frequency depends on the microwave power

D. Vion et al., Science 296 (2002)
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Measurement of T1

- T1 is the longest scale and it has also 
contribution to T2
-With echo technique stationary 
inhomogenities can be filtered out
- from the resonance signal ~ T2 can be 
deduced

Spin-echo

D. Vion et al., Science 296 (2002)
Grégoire Ithier PhD Thesis
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Operation:
- Prepare eg. to state 1
Readout:
- change Ic, such that 1 can tunnel out 
finite voltage appears on the junction
- or swap 1-2, and 2 can tunnel out 

Rabi oscillations etc…

Tune the potential of a sing JJ (washboard potential) , such, that it is asymmetric and 
only houses 2-3 levels
Ec<<EJ, I<Ic

Tilt the potential such, that it only 
houses 1 or 2 levels

a bit different design (flux controlled phase qbit)



BUTE, Low temperature 
solid state physics laboratoryPhase qubit

Coupled phase qubits
Capacitive coupling

- The levels (splitting) of the single qubits are tunable
-If the level spacing is nearly the same than the states of 
the two qubits hybridize
-First three levels |00>, |01> - |10> and |01> + |10> 

Escape probability is measured

Ib1 is fix, f is fix and Ib2 is tuned
For fix f, Ib2 will tune the coupled levels, 
and for some Ib2 the condition is fulfilled

On the f--Ib2 map avoided crossing is 
seencoupling

R. McDermott et al., Science 307 (2005)
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Readout of both qubits at the same time
Qbits are brought to resonance
At resonance |01> and |10> are not eigenstates
Prepare |00>, than excite qbit1  |10>
This is not an eigenstate and start to precess
Measurement of the two qubits is anticorrelated
Coherence time is the same as for single qubit

At t=hbar/2S, |10> goes to i| 01>   iSwap

R. McDermott et al., Science 307 (2005)
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Two wells two levels – for symmetric potential degenerate flux states
The two states have opposite persistent current
If tunneling in switched on (), states hybridize and the macroscopic tunneling determines the 
separation

Hard to fabricate, big loop is needed for inductance matching (big decoherence) 3 JJ-s qbit

where


potential for half integer flux bias

3-junction flux qubit

the potential is parabolic on the white intersection
I. Chiorescu et al., Science 299 (2003)
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The current as a function of the flux
Away from half flux quanta, pure flux states

 

Detection – by DC squid measuring the opposite supercurrents

A small change in the squid signal
shows the persistent current states

Caspar H. van der Wal et al.,  Science 290 (2000)
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Ibias

During the sweeping of the magnetic field, microwave applied
- the resonance seen for different frequencies at different flux points
- peaks indicate switching between flux states
- the spectra is nicely reproduced

Caspar H. van der Wal et al.,  Science 290 (2000)
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If control qubit is 1, it flips the target qubit
here, the first qubit is the control qubit, |10>|11> and |10>|11>

Qubits are operated far from the degeneracy point
Main idea: If one of the qubits manipulated, e.g.. qubit 1 is excited, 
the change of the persistent current will change the resonance 
frequency of qubit 2
Qubit1= Control, Qubit2=Target
states 0C0T, 0C1T, 1C0T, 1C1T 
Using microwave pulses for rotations (its phase determines the axes)

With this rotation qubit 1 controlled CNOT 
is realized (almost, but phase can be easily 
shifted)

J. H. Plantenberg et al., NATURE 447 (2007)
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- preparation of state
- CNOT
- measurement of qubit states

e.g. first rotation prepares from |00>  a|00>+ b|10>
than the CNOT is only resonant  for |10>
|10>|11>
|00>|00>
With other preparation sequence other 2 relations
From readout P00 and P10 … can be determined

control target

11

00

10

00

10

Target result

J. H. Plantenberg et al., NATURE 447 (2007)
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Superconducting Circuits and Quantum 
Information
J. Q. You and Franco Nori
Phys. Today 58(11), 42 (2005)

Superconducting Quantum Circuits, Qubits 
and Computing
G. Wendin and V.S. Shumeiko
arXiv:cond-mat/0508729v1


