Memresistive switching in Ag_2S solid electrolyte

Gubicza Ági

Nanophysics seminar

2012. december 6.

イロン イヨン イヨン イヨン 三日

¹T. Hasegawa et al., *Atomic Switch: Atom/Ion Movement Controlled* Devices for Beyon Von-Neumann Computers, Adv.Mata 24, 252 (2012)

2 / 22

э

Gap-type atomic switch

- e⁻ injection into an Ag₂S crystal: reduction of cations, precipitation on the surface
- SEM: controlling the position and irradiation time of the e⁻ beam: Ag nanodots can be formed in a patterned structure
- STM mode ²or crossbar structure

²K. Terabe et al., JAP, **91**, 12 (2002)

Gap-type atomic switch - STM mode

$$\frac{dI}{dt} = Aexp(-D \cdot It)$$

dl/dt does not depend on bias
 A, D : coefficients
 lt: tunnel current

Gap-type atomic switch - crossbar structure

- 10⁵ switches
- switching time: R decreases from 1 M Ω to 12.9 k Ω

Crossbar structure - switching time

^{6 / 22}

Gapless-type atomic switch

- conductive path is made in an ionic conducting material
- forming process
- electric field-driven activated hopping
- min. switching time:
 5 ns
- Ag₂S: on/off ratio: 10⁵, switching speed: 1 ms

Shortest switching time

m		m · ·			e .
Table	1.	Typical	parameters and	а кеу	Teatures

FEOL	180-nm CMOS		
Active cell area	40 nmø		
Set pulse width	5 ns		
Set current	110 µA		
Set voltage	+3 V		
Reset pulse width	1 ns		
Reset current	125 µA		
Reset voltage	-1.7 V		
Resistance read	+0.1 V		
voltage			
Endurance	10 ⁷ cycles		

redox reactions: Ti-doped NiO ⁴

- 5 ns switching time
- series transistor: current limiter during the set
- symmetric, unipolar
- long reset time, large reset current

 $^3{\rm K}.$ Aratani et al., IEEE Int. Electron Dev. Meeting, 2007, pp 783-786 $^4{\rm K}.$ Tsunoda et al., IEEE Int. Electron Dev. Meeting, 2007, pp 767-770 $~\cong$

^{8 / 22}

Towards a quantitative description of solid electrolyte conductance switches⁵

Theory: Hebb and Wagner model

$$-eV = \varepsilon_F'' - \varepsilon_F' = \mu_e'' - \mu_e' \tag{1}$$

': Ag electrode, ": Pt electrode

$$\mathbf{j}_{e} = \frac{\sigma_{e}}{e} \nabla \mu_{e}$$
 (2) $\mathbf{j}_{Ag^{+}} = -\frac{\sigma_{Ag^{+}}}{e} \nabla \mu_{Ag^{+}}$ (3)

local thermodynamic equilibrium:

$$\mu_{Ag} = \mu_{Ag^+} + \mu_e \tag{4}$$

$$-eV = (\mu_{Ag}'' - \mu_{Ag}') - (\mu_{Ag^+}'' - \mu_{Ag^+}')$$
(5)

t >> 0:

$$\nabla \mu_{Ag^+} = 0, j_{Ag^+} = 0$$
 (6)

$$\nabla \mu_e = \nabla \mu_{Ag}, j_{total} = j_e \tag{7}$$

⁵Morales-Masis, Ruitenbeek et al., Nanoscale, **2**, 2275 (2010) = + (=) - (Q)

Towards a quantitative description of solid electrolyte conductance switches

$$e\mathbf{j}_{total}(\mathbf{r}) \cdot d\mathbf{r} = \sigma_e d\mu_{Ag} \tag{8}$$

$$e \int_{r''}^{r'} \mathbf{j}_{total}(\mathbf{r}) \cdot d\mathbf{r} = -\frac{e}{K} I$$
(9)

 $\sigma_e = \sigma_0 e^{(eV/kT)}$

$$I(V) = K\sigma_0 \frac{k_B T}{e} \left(e^{(eV/K_B T)} - 1 \right)$$
(10)

in AFM geometry: $K = 2\pi a$

Towards a quantitative description of solid electrolyte conductance switches

- \bullet deposition of Ag_2S: sputtering Ag in Ar/H_2S plasma on top of a Ag film
- Ag₂S layer thickness: approx. 200 nm, with 30 nm roughness, $5x5 \text{ mm}^2$
- Ag : 100 nm, 10×10 mm²
- room temperature measurements

Towards a quantitative description of solid electrolyte conductance switches

tip contact radius: $a = K/(2\pi) = 12nm$ Simulation:

$$\delta = n - p = 2K_i^{1/2} sinh\left(\frac{e(V_0 - V(d))}{kT}\right)$$

- supersaturation
- nucleation within the silver sulfide

Bulk and surface nucleation processes in Ag2 S conductance switches 6

Bulk and surface nucleation processes in Ag2 S conductance switches

Bulk and surface nucleation processes in Ag2 S conductance switches

T=240K

100 s between the forming and the topography scan \Rightarrow cluster shrinks back to the Ag_2S

Quantized conductance steps in Ag_2S^7

⁷Wanegaar, Ruienbeek et al., JAP, **111**, 014302 (2012) (♂→ < ≥→ < ≥→ ≥ ∽ へ ⊙

Quantized conductance steps in Ag₂S

Real-Time In Situ HRTEM-Resolved Resistance Switching of Ag2S Nanoscale Ionic Conductor ⁸

⁷Xu et al., ACS Nano, **4**, 5 (2010)

Sample preparation:

- d=0.5 mm Ag wire and S powder annealed in vacuum
- anneal: 200°C, 30 min
- sulfidized Ag wire annealed in argon (200°C, 30 min)
- Ag₂S scratched with a clean Ag wire, small pieces were transferred
- sharp W tip on a piezotube

Real-Time In Situ HRTEM-Resolved Resistance Switching of Ag2S Nanoscale Ionic Conductor

Applications - Photo sensing

Applications - Synaptic operations

- short-term plasticity (STP)
- long-term potentiation (LTP)

Bibliography

- T. Hasegawa et al., Atomic Switch: Atom/Ion Movement Controlled Devices for Beyon Von-Neumann Computers, Adv.Mat. 24, 252 (2012)
- K. Terabe et al., JAP, **91**, 12 (2002)
- K. Aratani et al., IEEE Int. Electron Dev. Meeting, pp 783-786 (2007)
- K. Tsunoda et al., IEEE Int. Electron Dev. Meeting, pp 767-770 (2007)
- Morales-Masis, Ruitenbeek et al., Nanoscale, 2, 2275 (2010)
- **111**, 014302 (2012) Wanegaar, Ruienbeek et al., JAP, **111**, 014302 (2012)
- Ø Morales-Masis et al., Phys. Rev. B 84, 115310 (2011)
- 3 Xu et al., ACS Nano, 4, 5 (2010)