Peremeffektusok szemiklasszikus értelmezése grafénben

P. Rakyta, J. Cserti

Department of Physics of Complex Systems, Eötvös University, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary

L. Oroszlány, A. Kormányos, C. J. Lambert

Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK

Bevezetés a grafén fizikájába - Tight Binding modell

2004-ben előállította Novoselov, Geim és csapatuk (Science 306, 666).

Bevezetés a grafén fizikájába - burkoló függvények

 \blacksquare $\mathbf{k} = \mathbf{K}$ és $\mathbf{k} = \mathbf{K}'$ -re a TB Bloch-függvények: $\varPsi_K(\boldsymbol{r})$, $\varPsi_{K'}(\boldsymbol{r})$.

Im Lassan változó $\Psi_1(\boldsymbol{r})$, $\Psi_2(\boldsymbol{r})$, $\Psi_3(\boldsymbol{r})$, $\Psi_4(\boldsymbol{r})$ burkolófüggvények.

$\Psi_A(x) = \Psi_B(x)$	$oldsymbol{r}) = \Psi$ $oldsymbol{r}) = \mathrm{i} \Psi$	${}_1(oldsymbol{r}) arPsi_K$ ${}_2(oldsymbol{r}) arPsi_K$	$(oldsymbol{r})-oldsymbol{r}$	$\Psi_4(oldsymbol{r}) arPsi_{K'}$ i $\Psi_3(oldsymbol{r}) arPsi_K$	$(oldsymbol{r})$	A B	$egin{array}{c} K \ \Psi_1(m{r}) \ \Psi_2(m{r}) \end{array}$	$egin{array}{c} K' \ \Psi_4(m{r}) \ \Psi_3(m{r}) \end{array}$
$\hat{H} = v_F$	$\begin{pmatrix} 0\\ \hat{p}_x + i\hat{p}_y\\ 0\\ 0 \end{pmatrix}$	$\hat{p}_x - \mathrm{i}\hat{p}_y$ 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ \hat{p}_x+\mathrm{i}\hat{p}_y\end{array}$	$\begin{pmatrix} 0 \\ 0 \\ \hat{p}_x - i\hat{p}_y \\ 0 \end{pmatrix}$	Ĥ	$egin{pmatrix} \Psi_1(m{r}) \ \Psi_2(m{r}) \ \Psi_3(m{r}) \ \Psi_4(m{r}) \end{pmatrix}$	$\left. \right) = E \left(\right)$	$egin{aligned} & \Psi_1(oldsymbol{r}) \ & \Psi_2(oldsymbol{r}) \ & \Psi_3(oldsymbol{r}) \ & \Psi_4(oldsymbol{r}) \end{pmatrix}$

 \blacksquare \hat{H} a kontinuum modell Hamilton-operátora.

Bevezetés a grafén fizikájába - Dirac-féle Hamilton-operátor

Hamilton-operátor:

$$\hat{H} = au_0 \otimes \hat{H}_\sigma$$
,
 $au_0 = \mathbb{I}_2$, $\hat{H}_\sigma = v_F \sigma \hat{p}$

 H_{σ} egy nulla tömeget leíró Dirac-féle Hamilton-operátor

izospin-tér \otimes pszeudospin-tér $\otimes L_2$ $K,\,K'$ kúpok \otimes $A,\,B$ bázisatomok \otimes Ψ_i

az izospin és pszeudospin SU(2) algebrát követnek

 $\Rightarrow \frac{2}{\hbar} \langle \hat{\boldsymbol{\sigma}} \rangle$ a mozgás irányába mutató egységvektor. Ezt a vektort nevezzük az elektron kiralitásának.

Hilbert-tér:

Az izospin

- Mer Kontinuum modellben nincsenek K K' osszcillációk. Ezt a $\Psi_K(\boldsymbol{r})$, $\Psi_{K'}(\boldsymbol{r})$ bázisfüggvények kódolják.
- A hiányosságot az izospinnel pótoljuk:

$$\boldsymbol{i}_{K,K'} = \frac{1}{\sqrt{2}} \begin{pmatrix} \boldsymbol{\Psi}_K(\boldsymbol{r}) \\ \boldsymbol{\Psi}_{K'}(\boldsymbol{r}) \end{pmatrix}$$

 \blacksquare szabad elektronra: $\varPsi_K(m{r})=e^{\mathrm{i}m{K}m{r}}$, $\varPsi_{K'}(m{r})=e^{\mathrm{i}m{K'}m{r}}$

Rakyta Péter

Az izospin

Az izospin megválasztása egy S¹

 szimmetria erejéig egyértelmű:

 (a TB hullámfüggvény nem változik)

Ez egy forgatás az izospin-vektoron:

 A forgatást egy SU(2) transz Imp formációval kompenzáljuk a Diracspinor izospin-terén:

$$\Psi_{K}(\boldsymbol{r}) \longrightarrow \Psi_{K}(\boldsymbol{r}) e^{i\frac{\varphi}{2}}$$
$$\Psi_{K'}(\boldsymbol{r}) \longrightarrow \Psi_{K'}(\boldsymbol{r}) e^{-i\frac{\varphi}{2}}$$
$$\hat{\boldsymbol{\nu}} = \begin{pmatrix} \cos(\boldsymbol{K}\boldsymbol{r} - \boldsymbol{K'}\boldsymbol{r} + \varphi) \\ \sin(\boldsymbol{K}\boldsymbol{r} - \boldsymbol{K'}\boldsymbol{r} + \varphi) \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \\ \Psi_4 \end{pmatrix} \longrightarrow \Psi_{\varphi} = \begin{pmatrix} e^{-i\frac{\varphi}{2}} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \\ e^{i\frac{\varphi}{2}} \begin{pmatrix} \Psi_3 \\ \Psi_4 \end{pmatrix} \end{pmatrix}$$

 ${}^{\rm I\!I\!I\!I\!I\!I}$ a Hamilton-operátor invariáns marad bármilyen izospin-téren hatóSU(2) transzformációra.

BME nano szeminárium

Szemiklasszikus közelítések: sorfejtés \hbar hatványokban

- we végtelen grafén minta, egy Dirac-kúp ($\hat{H}_{\sigma} = v_F \sigma \hat{p}$)
- \blacksquare a hullámfüggvény és Dirac-egyenlet sorfejtése \hbar hatványaiban

$$\Psi_{\sigma} = \frac{\mathcal{A}(\mathbf{r})}{\sqrt{2}} \begin{pmatrix} \tau_1(\mathbf{r}) \\ 1 \end{pmatrix} e^{i\gamma(\mathbf{r})} e^{iS(\mathbf{r})/\hbar}$$

ahol $d\varphi$ a pszeudospin elfordulása a Γ_i trajektória dl hosszú szakaszán. \Rightarrow A trajektória mentén változik az elektron kiralitása.

 ΔL

Szemiklasszikus közelítések: kvantálási feltétel

A hatás az $E - \mathcal{H}\left(\frac{\partial S(\mathbf{r})}{\partial \mathbf{r}}, \mathbf{r}\right) = 0$ Hamilton-Jacobi egyenlettel definiált, ahol a Hamilton-függvény:

$$\mathcal{H}(\mathbf{p},\mathbf{r}) = v_F \sqrt{(p_x(\mathbf{r}) - eA_x(\mathbf{r}))^2 + (p_y(\mathbf{r}) - eA_y(\mathbf{r}))^2}$$

A kvantálási feltételt a hullámfüggvény egyértékűsége szabja meg:

$$\frac{1}{\hbar} \oint_{\Gamma_j} \mathbf{p} \, d\mathbf{r} + \gamma_j = 2\pi \left(n_j + \frac{\mu_j}{4} \right)$$

 \blacksquare n_j pozitív egészek,

 μ_j -k a Maslov-indexek (a trajektória Γ_j -re vett vetületén az érintett klasszikus fordulópontok száma),

BME nano szeminárium

Kötött állapotok szemiklasszikus leírása grafénben

P. Carmier, U. Denis:

Berry phase in graphene: Semiclassical perspective,

Physical Review B 77, 245413 (2008);

A. Kormanyos, P. Rakyta, L. Oroszlany, J. Cserti: Bound states in inhomogeneous magnetic field in graphene: Semiclassical approach,

Physical Review B **78**, 045430 (2008).

A peremfeltétel általános alakja

 $\stackrel{\text{\tiny IIII}}{\longrightarrow} A \Psi \text{ hullámfüggvény a peremen } (\mathcal{E}) \text{ az alábbi peremfeltételt elégíti ki:} \\ \hat{M}\Psi = \Psi \ , \qquad \text{ahol } \hat{M} = \hat{M}^{\dagger} \ , \quad \hat{M}^2 = \hat{I}$

$$\blacksquare$$
 a legáltalánosabb alak: $\hat{M} = \sum_{i,j=0}^{3} (\tau_i \otimes \sigma_j) c_{ij}$

Feltételek:

- \blacksquare a peremre merőlegesen nem folyik áram: $I_{\mathcal{E}} = 0$
- elektron-lyuk szimmetria

Ezek a feltételek csökkentik a független c_{ij} együtthatók számát.

A peremfeltétel általános alakja

Az előző feltételek és egyéb TB megfontolások alapján:

$$\hat{M} = \sin \Lambda \ (\tau_0 \otimes \sigma_z) + \cos \Lambda \ (\hat{\boldsymbol{\nu}}\boldsymbol{\tau} \otimes \hat{\boldsymbol{n}}\boldsymbol{\sigma})$$

- *cikk-cakk* perem: $\hat{\boldsymbol{\nu}} || \hat{z}, \hat{\boldsymbol{n}} || \hat{z}, \Lambda = 0.$
- armchair perem: $\hat{\boldsymbol{\nu}} \perp \hat{z}$, $\hat{\boldsymbol{n}} \perp \hat{z}$, $\hat{\boldsymbol{n}} \perp \hat{\boldsymbol{n}}_{\mathcal{E}}$, $\Lambda \in \mathbb{R}$.

Armchair perem esetében időtükrözésre invariáns rendszerre $\Lambda = 0$, egyébként határozatlan.

A reflexió mechanizmusa: armchair perem esetében

Az
$$i^{\pm}$$
 izospin bázis: $\langle i^{\pm} | \boldsymbol{\tau} | i^{\pm} \rangle = \pm \hat{\boldsymbol{\nu}}$
 \hat{M} mátrix $i^{\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\frac{\varphi}{2}} \\ \pm e^{i\frac{\varphi}{2}} \end{pmatrix}$ izospinű
sajátvektorai: $\hat{M} \boldsymbol{Z}^{\pm} = \boldsymbol{Z}^{\pm}$
 $\boldsymbol{Z}^{\pm} = i^{\pm} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm \varrho \end{pmatrix}, \quad \varrho = \frac{1-\sin\Lambda}{\cos\Lambda}$

A határfeltételt kielégítő hullámfüggvény:

$$\Psi^{\pm} = \eta^{\pm} \mathbf{Z}^{\pm} e^{ikx} = i^{\pm} \otimes \left(\Psi^{be}_{\sigma} + \hat{r}^{\pm} \Psi^{ki}_{\sigma}\right) e^{ikx}$$

$$\Psi_{\sigma}^{be} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\alpha} \\ 1 \end{pmatrix} , \quad \Psi_{\sigma}^{ki} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\alpha} \\ 1 \end{pmatrix}$$

■ a megfelelő hullámfüggvénynek határozott izospinje van ⇒ az izospin megmarad a reflexió során. Meghatározható \hat{r}^{\pm} és η^{\pm} .

Reflexiós fázistolás $\Lambda = 0$ esetben

időtükrözésre invariáns rendszer esete:

$$\hat{r}^{\pm} = \operatorname{Exp}\left(\mathrm{i}\Delta\Phi_{\mathcal{E}}^{\pm}\right)$$

$$\Delta \Phi_{\mathcal{E}}^{+} = \gamma_{\mathcal{E}} + \Theta \left(- \frac{p_{x}^{M}}{|p_{x}^{M}|} \Big|_{\mathcal{E}} \right) \pi , \quad \Delta \Phi_{\mathcal{E}}^{-} = \Delta \Phi_{\mathcal{E}}^{+} + \pi$$

 $\rightarrow \gamma_{\mathcal{E}}$ a pszeudospin elfordulási szöge. Ugyanaz a geometriai jelentése mint a Berry-fázis szerű γ fázisnak a szemiklasszikus formalizmusban.

Reflexió-mátrix

$$\begin{array}{cccc} & & & \\$$

 Több perem esetében az eredő fázistolásokat az azonos izospin bázisba traszformált reflexió-mátixok szorzatának sajátértékei határozzák meg.
 például: grafén cső

$$\hat{R}^{(2)} = \hat{U}\hat{R}(\mathcal{E}_2)\hat{U}^+\hat{R}(\mathcal{E}_1)$$
$$\begin{pmatrix} \boldsymbol{i}_{\mathcal{E}_1}^+ \\ \boldsymbol{i}_{\mathcal{E}_1}^- \end{pmatrix} = \hat{U}\begin{pmatrix} \boldsymbol{i}_{\mathcal{E}_2}^+ \\ \boldsymbol{i}_{\mathcal{E}_2}^- \end{pmatrix}$$

Armchair cső gyenge mágneses mezőben

- $\Lambda = 0$, azaz időtükrözésre invariáns peremfeltétel közelítés.
- $F(\tau) = \frac{S(\tau)}{\hbar},$

Szabad elektront leíró izospin közelítés. au_{\pm} a fordulópontok ($\Psi_K(m{r}), \Psi_{K'}(m{r})$ síkhullámok)

A reflexiók $\frac{2}{3}\pi$ fázisát nem lehet szétbontani az egyes peremek járulékaira.

15. oldal

Armchair cső spektruma gyenge mágneses mezőben

- C.W.J. Beenakker és munkatársainak 2DEG-ben végzett számolásai alapján grafénben is fókuszálási csúcsok. (PRB 39, 12 (1989))
- A pontkontaktusok között a cső módusai szállítják az áramot.
- Különbséget várunk cikk-cakk és armchair cső között.

Elektronfókuszálás: konduktancia TB modellel számolva

Cikk-cakk cső esetében eltűnnek a magasabb rendű csúcsok.

Összefoglalás

- Az izospinhez szemléletes értelmezést társítottunk.
- Kidolgoztuk az elemi gerjesztések szemiklasszikus leírására alkalmas formalizmust.
- C.W.J. Beenakker és munkatársai által megadott peremfeltétel mátrixot felhasználva leírtuk a reflexiók klasszikus mechanizmusát.
- Az eredmények lényegesek a peremekkel rendelkező grafén minta fizikai folyamatainak leírásához.

Peremállapotok erős mágneses mezőben

Mennyire tér el a $\Lambda = 0$ -val közelített spektrum az egzakt spektrumtól?

```
Kígyó-állapotok:
```

L. Oroszlány, P. Rakyta, A. Kormányos, C.J. Lambert, J. Cserti, Phys. Rev. B 77, 081403(R) (2008).

Kontinuum modellben a kígyó-állapotok spektruma megegyezik a $\Lambda = 0$ peremfeltétellel felírt peremállapotok spektrumával egy kétszeres degeneráció erejéig $\Longrightarrow TB_{\mathcal{E}}(B \gtrsim 0) \approx TB_{Snake}$.

$$K_{\mathcal{E}}(B \gtrsim 0) \cong K_{Snake} \approx TB_{Snake} ?\approx? TB_{\mathcal{E}}(B > 0) \approx K_{\mathcal{E}}(B > 0)$$

- K kontinuum modell, TB Tight Binding
- \mathcal{E} peremállapot (edge state), Snake kígyó-állapot

BME nano szeminárium

A kígyó-állapotok és peremállapotok spektrumának átlagos eltérése

