Signatures of Majorana Fermions in S-TI-S devices Journal Club Attila Márton MSc student

BUTE, Department of Physics, 2012 Supervisor: Dr. Szabolcs Csonka (Dept. Of Physics, BUTE)

Journal Club

Signatures of Majorana Fermions in Hybrid Superconductor-Topological Insulator Devices

J. R. Williams,¹ A. B. Beswick,¹ P. Gallagher,¹ Seung Sae Hong,² Y. Cui,^{3,4} Andrew S. Bleich,⁵ J. G. Analytis,^{2,4} I. R. Fisher,^{2,4} and D. Goldhaber-Gordon¹

¹Department of Physics, Stanford University, Stanford, CA 94305, USA ²Department of Applied Physics, Stanford University, Stanford, CA 94305, USA

³Department of Material Science, Stanford University, Stanford, CA 94305, USA

⁴Stanford Institute for Materials and Energy Sciences,

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

⁵Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA

(Dated: February 13, 2012)

Majorana fermions:

• Predicted by E. Majorana[1](1934): neutral spin-1/2 particles can be described by a real wave equation; M.E:

 $-i\partial\!\!\!/\psi + m\psi_c = 0$

- $\Psi E.M.F. \rightarrow$ charge neutrallity
- Particle that it is its own antiparticle

Candidates:

- Neutrinos been proposed to be of a Majorana nature \rightarrow ?
- Supersymmetry's hypotetical neutralinos ???
- Theoritical prediction in solidstate materials: middle of a 2nd SC vortex, end of SC NW, etc.

[1] E. Majorana, Teoria simmetrica dell'elettrone e del positrone, Nuovo Cimento 14, 171 (1937)

Signatures of MF found in SC-TI-SC JJs

- Topological Insulators (TIs)[2]:
 - Insulating @ bulk
 - Permitted charge movements on surface (meta)

(appl.:surface 2DEGs w/ locked spin momentum)

Signatures of MF found in SC-TI-SC JJs

- Topological Insulators (TIs)[2]:
 - Insulating @ bulk
 - Permitted charge movements on surface (metallic)

(appl.:surface 2DEGs w/locked spin momentum)

• Josephson Junctions (JJs) (S-I/N/s/TI-S):

Signatures of MF found in SC-TI-SC JJs

• Josephson Junctions (JJs) (S-TI-S):

TI: 75nm Bi_2Se_3 synthetized slow cooling of binary melt of Bi and Se or VLS growth +mechanical exfoliation

SC leads: 3nm Ti – 60-100nm Al +EBL, deposition

Measurements:

-in ³He/⁴He dilution refrgirator (~12mK) -standard DC and lock-in meas. setup

Signatures of MF found in SC-TI-SC JJs

• Josephson Junctions (JJs) (S-TI-S):

Characteristic prop. of conventional JJs:

- product of $I_C R_N \sim \Delta/e$ + independent from device geometry
- "Frauhofer-like" magnetic diffraction pattern first minimum in $I_C @ B=B_C (\Phi_0=h/2e)$

Report:

- small value of $I_C R_N \sim 1/W$
- B_C is 5 times smaller than expected

 \rightarrow no theoritical prediction or report

Signatures of MF found in SC-TI-SC JJs

- Josephson Junctions (JJs) (S-TI-S):
- \rightarrow theoritical work [3]
 - study of a SC-TI surface proximity effect
 - resembles 2D spinless $p_x + ip_y$ superconductor

→phenomenological extensions:
1st: confinement along the 1D wire

Superconducting

Superconducting Lead

Lead

Signatures of MF

Signatures of MF found in SC-TI-SC JJs

- Josephson Junctions (JJs) (S-TI-S):
- \rightarrow theoritical work [3]
 - study of a SC-Ti surface proximity effect
 - resembles 2D pinless p_x+ip_y superconductor

Signatures of MF found in SC-TI-SC JJs

- Josephson Junctions (JJs) (S-TI-S):
- \rightarrow phenomenological extensions:

1st: confinement along the 1D wire

E=0: topological nature, not affected by the conf. E \neq 0: quantization \rightarrow discrete energy levels

2nd: only E=0 superconducts, E≠0 states are dissipative

0 I (μA)

Signatures of MF DC response:

 \rightarrow DC response, V(I,B) @ 12mK : I_C=850nA \rightarrow I>I_C excess current due to the CP leakage, V >2 Δ /e \rightarrow no hysteresis – junction is overdamped B (mT 400 (v (juV) 50 -400 RN= 350hm, ICRN=30.6 uV 0 15 -15 I (μ̈́́́́́́́́́́́́́́́́́́́́́́́)) (۱/۱) V Theoritical prediction: 50· 280-427uV !!! (رام) ۷ Control sample w/ graphite weak link -50 244 uV !!! L = 45 nm2 0 I (μ̈́Α) W = 1µm Thermic reduction ruled out (~3.4K) -100

Width dependance: samples $R_{N1}=56.1$ Ohm, $W_1=1um$, $R_{N2}=51.5$ Ohm, $W_2=0.5$ um

→DC response, V(I,B) @ 12mK : I_C =850nA →I>I_C excess current due to the CP leakage, V >2 Δ /e →no hysteresis – junction is overdamped

Width dependance: samples RN1=56.1 Ohm, W1=1um, RN2=51.5Ohm, W2=0.5 um

→DC response, V(I,B) @ 12mK : $I_C=850nA$ →I> I_C excess current due to the CP leakage, V >2 Δ /e →no hysteresis – junction is overdamped

→ $I_C R_N \sim 1/W \rightarrow v_{ex}$ of dissipative excitations can be extracted frin slope $v_F \sim 10^5 - 10^6 > v_{ex} = 1.4 \pm 0.2 \times 10^5 \text{m/s}$ ~ Δ/e or $(\Delta/e)^2$ – good agreement

Signatures of MF Magnetic diffraction pattern:

- B_C is 5 times smaller then expected: 1.7mT $\leftarrow \rightarrow$ 9.3 mT
- $I_C(B)$ deviates from typical FDP

• Existance of added features @ $I < I_C$

