The interaction of microwave cavities with quantum dots

2012.10.11.

Motivation

BUTE, Low temperature solid state physics laboratory

Nobel Prize 2012

Serge Haroche, David J. Wineland

Interaction of atoms with the photons of the cavity

Jaynes-Cummings

BUTE, Low temperature solid state physics laboratory

2 level atom $\hat{H}_{atom} = \frac{1}{2}\hbar\omega_a \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} = \frac{1}{2}\hbar\omega_a\sigma_z \qquad |g\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix} \quad |e\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$

Photon field

$$\begin{split} \hat{H}_{photon} &= \hbar \omega_r a^{\dagger} a \\ \text{Interaction} & \text{Dipole moment} \\ \hat{H}_{int} &= -\vec{d} \vec{E} & \hat{d} = \frac{d}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{d}{2} (\sigma_+ + \sigma_-) \\ \hat{H}_{int} &= \sim \hbar g (a^{\dagger} \sigma_- + a \sigma_+ + a \sigma_- + a^{\dagger} \sigma_+) \\ \text{Rotating wave approx.} \end{split}$$

$$\begin{split} & \text{Electric field} \\ & \hat{E} = \sqrt{\frac{\hbar\omega_r}{\epsilon_0 V}} \sin(Kz) (\hat{a} + \hat{a}^{\dagger}) \\ & g = \frac{d}{2\hbar} \sqrt{\frac{\hbar\omega_r}{\epsilon_0 V}} \sin(Kz) \\ & \text{Coupling} \end{split}$$

$$\hat{H} = \frac{1}{2}\hbar\omega_a \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} + \hbar\omega_r a^{\dagger}a + \hbar g(a^{\dagger}\sigma_+ + a\sigma_-)$$

Jaynes-Cummings Hamiltonian

In a new basis:

$$\begin{split} |e,n\rangle &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \quad |g,n+1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix} \\ \hat{H} &= (n+1/2)\omega_r \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -\delta/2 & g\sqrt{n+1}\\ g\sqrt{n+1} & \delta/2 \end{pmatrix} \\ \text{Detuning: } \delta &= \omega_r - \omega_a \end{split}$$

Jaynes-Cummings

BUTE, Low temperature solid state physics laboratory

 $\delta = 0$ Resonant case

$$\hat{H} = (n+1/2)\omega_r \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -\delta/2 & g\sqrt{n+1}\\ g\sqrt{n+1} & \delta/2 \end{pmatrix}$$
$$E_n = (n+1/2)\omega_r \pm R/2$$
$$R = 2g\sqrt{(n+1)} \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

$$P_e(t) = \frac{1}{2}(1 + \cos(Rt))$$

Jaynes-Cummings

BUTE, Low temperature solid state physics laboratory

 $\delta \neq 0$ Off-resonance

$$E_n = (n+1/2)\omega_r \pm \sqrt{\delta^2/4 + g^2(n+1)}$$
$$E_n \sim (n+1/2)\omega_r \pm (\delta/2 + \frac{g^2}{\delta}(n+1))$$
$$= \begin{cases} n\omega_r + \omega_a/2 - \frac{g^2}{\delta}(n+1)\\ (n+1)\omega_r - \omega_a/2 + \frac{g^2}{\delta}(n+1) \end{cases}$$

N photons in the cavity, excited atom N+1 photons, ground state atom

The Hamiltonian after the perturbation calculation

$$\hat{H} = -\frac{1}{2}(\hbar\omega_a + \frac{g^2}{\hbar\delta})\sigma_z + (\hbar\omega_r - \frac{g^2}{\hbar\delta}\sigma_z)a^{\dagger}a$$

Lamb shift

Stark shift

BUTE, Low temperature solid state physics laboratory

Resonator frequency ~6.7 GHz (25 μ eV) Q~2600 E_c~ 1 meV, T~135mK No thermal photons

R_g – extends from the resonator to maximize the coupling This gives a selective capacitive coupling of the resonator to the right quantum dot.

Measure amplitude and phase of transmitted signal by heterodyne detection (mix with a local oscillator and measure low frequency signal).

T. Frey et al., Phys. Rev. Lett. 108, 046807 (2012)

Double dots

BUTE, Low temperature solid state physics laboratory

Két dot közötti csatolás C_m és R_m -sal jellemezve: $G_m = 4\pi e^2/h(t_c/\Delta)^2$, ha t_c kicsi, e-k jól lokalizáltak.

Transzport kizárólag 3-as pontokban (V_{sd}~ 0) Egyébként Coulomb-blokád E vezetés:

 $(\mathsf{N}_1,\mathsf{N}_2) \not \rightarrow (\mathsf{N}_1{+}1,\mathsf{N}_2) \not \rightarrow (\mathsf{N}_1,\mathsf{N}_2{+}1) \not \rightarrow (\mathsf{N}_1,\mathsf{N}_2)$

Lyuk vezetés:

 $(\mathsf{N}_1,\mathsf{N}_2) \not\rightarrow (\mathsf{N}_1\text{-}1,\mathsf{N}_2) \not\rightarrow (\mathsf{N}_1,\mathsf{N}_2\text{-}1) \not\rightarrow (\mathsf{N}_1,\mathsf{N}_2)$

Van der Wiel, Rev. Mod. Phys. 751 (2003)

2QDot stabilitás diagrammja

Ahol (N1,N2), Ni: elektronok száma az i. doton

- -Teljesen szétcsatolt határeset (a)
- Egy nagy dot határeset (c)
- Hexagonális mintázat két hármas-ponttal (b)
 Egyik 3-as pont lyuk, másik e vezetést ad

Double dots

BUTE, Low temperature solid state physics laboratory

Két dot közötti csatolás C_m és R_m-sal jellemezve:

Transzport kizárólag 3-as pontokban (V_{sd}~ 0) Egyébként Coulomb-blokád E vezetés:

 $(\mathsf{N}_1,\mathsf{N}_2) \not\rightarrow (\mathsf{N}_1{}^{+1},\mathsf{N}_2) \not\rightarrow (\mathsf{N}_1,\mathsf{N}_2{}^{+1}) \not\rightarrow (\mathsf{N}_1,\mathsf{N}_2)$

Lyuk vezetés:

 $(N_1, N_2) \rightarrow (N_1-1, N_2) \rightarrow (N_1, N_2-1) \rightarrow (N_1, N_2)$

 $\mu_i(N_1,N_2)$: az i-ik dot kémiai potenciálja pl: $\mu_i(N_1,N_2) = U(N_1,N_2)-U(N_1-1,N_2)$

Van der Wiel, Rev. Mod. Phys. 751 (2003)

2QDot stabilitás diagrammja

Ahol (N1,N2), Ni: elektronok száma az i. doton

Eneriaszintek a hármas-pontok körül:

a

b

С

BUTE, Low temperature solid state physics laboratory

T. Frey et al., Phys. Rev. Lett. 108, 046807 (2012)

First measure it in DC (V_{bias} =50 μ V) Similar pattern observed with microwave Microwave frequency and phase is sensitive to dot configuration The double dot is blockaded, however, for (2) interdot transitions are possible Seen diamond pattern where the current in DC is too small to measure

Investigate one particular transition \rightarrow

BUTE, Low temperature solid state physics laboratory

Tune interdot coupling by V_c

Measure full transmission spectra and determine the frequency and phase shift for different detunings (gate detuning) These quantities are plotted as a function of detuning (red line on 2D figure)

Two different wave-forms seen for different couplings

BUTE, Low temperature solid state physics laboratory

Energy scales

 $\begin{array}{ll} \gamma_1/2\pi\sim 100 \mathrm{MHz} & \mbox{Qbit relaxation} \\ \nu_0\sim 6.77 \mathrm{GHz} & \kappa/2\pi\sim 2\mathrm{MHz} & \mbox{resonator} & g/2\pi\sim 50\mathrm{MHz} & \mbox{Weak coupling} \\ 2t/h\sim 9\mathrm{GHz} & \gamma_\phi/2\pi\sim 0.9\mathrm{GHz} & \mbox{dispersive regime} \\ 2t/h\sim 6\mathrm{GHz} & \gamma_\phi/2\pi\sim 3.3\mathrm{GHz} & \mbox{Resonant regime, however dephasing is very fast, no effect of} \\ \end{array}$

BUTE, Low temperature solid state physics laboratory

Detect how the states damp, and shift the cavity freq Hexagonal diamond patterned measured 6GHz, Q~2000 Homodyne technique

Double QDot, bottom gates To maximize field source is connected to node, drain to antinode of the field

 $\sim 1000a_{B}$ dipole moment for an electron

Investigate interdot charge coupling Splitting... $E_c \sim 12 \text{ meV}$, $hf_r \sim 25 \mu \text{eV}$

BUTE, Low temperature solid state physics laboratory

Determine the vacuum Rabi freq, as they change the tunnel coupling

$$g/2\pi \sim 30 \mathrm{MHz}$$

Similar as for the Zurich group, but spin physics is also interesting

BUTE, Low temperature solid state physics laboratory

Investigate spin physics l (pA) 0 B Spin Blockade EDSR Measure I 14 (0,2) and (1,1) 12-(MM) For (0,2) ground state S(0,2)С 10-For (1,1) f_G (GHz) $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$, $|\uparrow\downarrow\rangle$, and $|\downarrow\uparrow\rangle$ 8--113 V_ (mV) ĝ,μ_sΒ Energy 6 g,µ,B Splitting of the fields with external field 2 S(0.2) G factors different for two dots, \rightarrow no twofold degeneracy 25 75 0 B (ml At zero detuning tunneling hybridizes S(0,2) with S(1,1) singlet Pauli blockade ($\uparrow \uparrow$ cannot go into S(0,2))

One can rotate one of the spins selectively (different g factors) by EDSR and lift the blockade: $hf_g = E_Z$ At low fields hyperfine mixes states

EDSR: The ac electric field is generated through the excitation of the gates, which periodically displaces the electron wave function around its equilibrium position. Due to the SOI the electron spin will feel an oscillating effective magnetic field, which is used to rotate the electron spin.

BUTE, Low temperature solid state physics laboratory

- See the Zeeman-lines in the cavity response
- Measure relaxation by waiting at zero detuning
- T₁~1ms
- Measure Rabi oscillations: vary EDSR pulse length and power
- -Estimations: coupling of distant qubits ~1 Mhz For reaching strong coupling regime need to dechorence rate, have ideas... (dynamical decoupling, GeSi core shell wires, ...)

- -Prepare in $\uparrow \uparrow$
- Negative detuning
- Rotate with EDSR
- Zero detuning and measure with cavity: sensitive to phase response

$$E = \frac{1}{2}CV^2$$
 $C_Q \sim \frac{\partial^2 E}{\partial V^2}$

Curvature counts, dipole: detuning dependent

Similar setup in nanotube

BUTE, Low temperature solid state physics laboratory

QD2

M. R. Delbecq et al., PRL107,256804 (2011), M.R. Delbecq et al., submitted to Nature Comm.

Similar setup in nanotube

BUTE, Low temperature solid state physics laboratory

Closed dot - sensing

Levels tuned with other gate No capacitive crosstalk possible Coupling via virtual exchange of photons

$$\Delta_{1(2)}^{polaron} = -4\pi g_1 g_2 N_{2(1)} / f_0$$

Shift depend on the number of electrons on the tuning dot

If the open dot is the sensing, no effective tuning possible

Crossings not lifted \rightarrow no electronic transport, and

- photon field is also far detuned
- Also measured the level shifts by cavity

BUTE, Low temperature solid state physics laboratory

Problem with charge qubit: sensitivity to charge noise, fluctuations of the gate electrode The degeneracy point is a sweet point, sensitivity to charge fluctuations is second order

linearly, still enough to separate qubit

BUTE, Low temperature solid state physics laboratory

 E_i/E_s increased by a shunting capacitance (E_c decreased): design parameter

BUTE, Low temperature solid state physics laboratory

$$g/2\pi \sim 1..100 {\rm MHz}$$

$$\nu_{\rm vac} = 11.6 \,\mathrm{MHz}$$

$$(g/2\pi = 5.8 \text{ MHz})$$

$$\kappa/2\pi = 0.8 \,\mathrm{MHz}$$

$$\gamma/2\pi = 0.7\,\mathrm{MHz}$$

BUTE, Low temperature solid state physics laboratory

Ā. Blais et al., PRA **69**, 062320 (2004)

BUTE, Low temperature solid state physics laboratory

BUTE, Low temperature solid state physics laboratory

Non resonant case, g≠0 dispersive regime: ω_r-ω_a>> g

- State dependent polarizability of 'atom' pulls the cavity frequency

$$H_{eff} = \hbar(\omega_r + \frac{g^2}{\Delta}\sigma_z) + \frac{1}{2}(\omega_a + \frac{g^2}{\Delta}\sigma_z)$$

qubit ac Stark shift and cavity shift

Example: **spectroscopy of CPB charge qubit**

The transition energies mapped with sophisticated setup...

Quantum bus

BUTE, Low temperature solid state physics laboratory

