New direction in science and technology: two-dimensional crystals

Attila Márton MSc student

BUTE, Department of Physics, 2012 Supervisor: Dr. Szabolcs Csonka (Dept. Of Physics, BUTE)

IOP PUBLISHING

Rep. Prog. Phys. 74 (2011) 082501 (9pp)

REPORTS ON PROGRESS IN PHYSICS

doi:10.1088/0034-4885/74/8/082501

New directions in science and technology: two-dimensional crystals

A H Castro Neto^{1,3} and K Novoselov²

¹ Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore

² School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Graphene:

- founded 2004-2005, rapid evolution, (graphite, fullerenes, CNT), NP-2010
 →application 2013?
- fabrication: exfoliation, SiC-, CVD growth ($\eta > 5000 \text{ cm}^2/\text{Vs}$) \rightarrow mass production
- extraordinary properties

Qdetectors:

materials, that detect quanta of EM radiation and convert them into prop. electric signal

directly deal with EMF

1.E+07

→wide bradband & no size limitation

1.E+08

1.E+13

1.E+14

1.E+15

• huge demand for operating Qdetectors operating @ low frequencies and high (gapless spectrum, large electronical mean free path, high mobility)

1.E+10

Frequency (Hz)

1.E+11

1.E+12

[1] de Andrade M C 2011 SPARWAR Systems Center Pacific, CERF Lab. private communication

1.E+09

10

0.1

1.E+06

Outlook

• Graphene literature explode was its extraction from 3D graphite...

... enormous number of layered materials!!!

- →Layered, weak interaction between them, no idea how they act when layers are decoupled
- They present correlated e- states where charge, spin, orbital, valley, lattice etc. play an important role
 - High-Tc CuO_2 planes SC???
 - CDW
 - MoS₂
 - Layered manganites, layered titanates, layered cobaltates
 - Site exchanges C $\leftarrow \rightarrow$ BN , molecular doping
 - BN

High- $T_c - CuO_2$ planes

• weakly coupled CuO₂ layers – exotic electronic properties!!!

→ 3D coupling serves to stabilze l.r. magnetic and SC order → essential features come from 2D CuO_2 layers

1. SC is a result of CP formation: evidence: flux quantzation, Josephson- effect

 \rightarrow G-L theory for electric properties

- 2. CuO_2 layer
- 3. These layers are weakly coupled →Lawrence-Doniach model
- 4. No net saving of ionic kinetic energy by CP formation
- 5. Spin-singlet state (NMR, spin-lattice relaxation meas.)

6.

[2] Nature Phys. 2 134

High- $T_c - CuO_2$ planes

• weakly coupled CuO₂ layers – exotic electronic properties!!!

→No signs of SC, not even SC fluctuations (Kosterlitz-Thouless)[3]

→ exafoliation is too abrasive, defects induced
 → present of the substrate, no SC fluctuations (no imprive since QHE in mobility, e-h puddles ~ Dirac point)

 \rightarrow Recover SC by using other substrate

Boron-nitride (BN)!!![4] BN is already use to recover the graphene's intrinsic electronic properties

Haven't tried yet! Is the 3D ature of the material is fundamental for SC?

[3] J. Phys.C: Solid State Phys. 6 1181, [4] Nature Nanotechnol. 5 722

Graphene – BN substrate

• example example to example the term of the example to the term of the example to the term of the example to the term of term of

 \rightarrow No signs of SC, not even SC fluctuations (Kosterlitz-Thouless)

→Hexagonal boron-nitride (h-BN):

- atomically smooth
- free of dangling bonds and trapped charges, inert
- insulator w/ large electrical band gap (~5.97eV)
- similar hexagonal lattice like graphene's @ small lattice mismatch ~1.7%, and surpressed rippling

Graphene – BN substrate

LETTERS PUBLISHED ONLINE: 22 AUGUST 2010 I DOI: 10.1038/NNANO.2010.172

nature nanotechnology

Boron nitride substrates for high-quality graphene electronics

[4]

C. R. Dean^{1,2*}, A. F. Young³, I. Meric¹, C. Lee^{4,5}, L. Wang², S. Sorgenfrei¹, K. Watanabe⁶, T. Taniguchi⁶, P. Kim³, K. L. Shepard¹ and J. Hone^{2*}

→Hexagonal boron-nitride (h-BN):

- atomically smooth
- free of dangling bonds and trapped charges, inert
- insulator w/ large electrical band gap (~5.97eV)
- similar hexagonal lattice like graphene's @ small lattice mismatch ~1.7%, and surpressed rippling
- $\in=3-4, V_{breakdown}=0.7V/nm$

Reduced scattering!!!

 $\mu_{\rm C}$ ~60 000 cm²/Vs \leftarrow three times bigger seen on SiO₂ \rightarrow Using suspended graphene ~70 000 cm²/Vs [4-2]

Incorporating C in BN

• similar hexagonal lattice like graphene's @ small lattice mismatch $\sim 1.7\%$

Semiconductor

→ stoichiometric compounds $B_{1-x}C_{x+y}N_{1-y}$ semiconductor→semimetal → band gap engineering[5]

[5] Mater. Res. Bull. 22 399

Charge density waves (CDW)

- modulation of the charge density via e⁻-e⁻ e⁻-ph [6]
 - →i.e.: transition metal dichalcogenides (TDM): NbSe₂, TaSe₂, NbS₂ or TaS₂
 - these are also layered materials
 - anisotropic physical properties (resistivity, thermal expansion, etc...)
 - phenomenological description (McMillan) [7]
 - \rightarrow CDW @ high T
 - \rightarrow accompanied SC phase @ low T

Competition of CDW and SC phase!!!

→No experimental evidence of SC or CDW in these devices [8] → ???

[6]Phys. Rev. Lett. 86 4382 (2001), [7] Phys. Rev. B. 12, 1187 (1975), [8] Nature 438 197 (2005)

MoS₂

MoS₂ FET

- \rightarrow MoS₂ is also a dichalcogenides[9]
 - layered material
 - insulator, gap ~1.8-2eV
 - low mobility: bulk~200cm²/Vs, layered~0.1-10cm²/Vs
 - absence of dangling bonds
 - thermal stability up to ~1100°C
- \rightarrow potential replasement of silicon in CMOS-like logic devices
- * induced gap in graphene <400meV (conf., stress, perpendicular electric field by BLG ~100V + μ reduction)

[9] Nature Nanotechnol. 6 147, http://genevalunch.com/blog/2011/01/30/mos2-offers-tiny-chips-with-huge-energy-savings-swiss-find

MoS₂ FET

- \rightarrow MoS₂ is also a dichalcogenides[]
 - layered material
 - insulator, gap ~1.8-2eV
 - low mobility: bulk~200cm²/Vs, layered
 - absence of dangling bonds
 - thermal stability up to ~1100°C

 \rightarrow Improve: BN substrate, increased mobility by intercalated Li (3D \rightarrow 2D??)

[9] Nature Nanotechnol. 6 147, http://genevalunch.com/blog/2011/01/30/mos2-offers-tiny-chips-with-huge-energy-savings-swiss-find/

Other materials & methods:

- +
- layered magnetites (magnetic, shows CMR and MIT) La_{1-x}Sr1+xMn(2)O4(7)
- layered titanates (strong photoelecttric effects) Na₂Ti₃O₇
- layered cobaltates (magnetic, charge ordering) NaCoO₂
- →All these materials present correlated e- states where charge, spin, orbital, valley, lattice etc. play an important role
- Layered, weak interaction between them, no idea how they act when layers are decoupled
- different growth methods (dynamics unkown)
- origami technic 3D engineering
- strain engineering
- chemical or molecular doping

Other materials & methods:

- different growth methods (dynamics unkown)[10]
- chemical or molecular doping
- origami technic 3D engineering[11]
- strain engineering[12][13][14]

[10] Nature 350 322 , [11] Phys. Rev. B 81, 161408, [12] J. Phys. Soc. Japan 71 2765, [13] Science 30 544, [14] Phys. Rev. B 80 045401

Ending credits:

