Electron Beam Lithography on Irregular Surfaces Using an Evaporated Resist

Jian Zhang, Celal Con, and Bo Cui*

Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Gergő Fülöp NanoJC 2014-04-08

- Non-planar, irregular, fragile substrate
- optical fiber: lab-on-fiber technology
 - coupling to a metallic nanostructure
- resist deposition methods
 - spinning (low viscosity)
 - spray coating
 - Langmuir-Blodgett method
- previous approaches
 - Pedersen et al.: plasma-polymerized hexane low sensitivity, poor resolution (~150 nm)
 - Eric et al.: sterol resist named QSR-5 moderate resolution, noncommercial resist
 - Daniel et al.: water vapor, ice formation special equipment, low sensitivity
 - similar issues with: CO₂, AIF₃, SiO₂

100 nm

Pa 1 = 34.36 nm Pb 1 = 8.7 °

new approach

- low molecular weight polystyrene (PS)
- sensitivity lower than PMMA's ~1 ueV/cm² @ 5keV
- low dry etching rate
- lack of edge bead effect (small wafers, e.g. single-crystal diamond)
- precise control of film thickness
- uniform coating (e.g. around dust particles)
- negligible attack to the substrate material (e.g. a polymer susceptible to dissolution)

resist parameters

roughness:

spin coated: 0.239

evaporated: 0.223

 same IR spectrum → no chemical modification during evaporation

sensitivity:

spin coated: 1920 uC/cm² evaporated: 4500 uC/cm² (lower molecular weight)

patterning an optical fiber

AFM cantilever

PUBLISHED ONLINE: 23 MARCH 2014 | DOI: 10.1038/NNANO.2014.39

The effect of spin transport on spin lifetime in nanoscale systems

Jeremy Cardellino[†], Nicolas Scozzaro[†], Michael Herman, Andrew J. Berger, Chi Zhang, Kin Chung Fong, Ciriyam Jayaprakash, Denis V. Pelekhov and P. Chris Hammel*

The effect of spin transport on spin lifetime in nanoscale systems

- magnetic resonance force microscopy (MRFM)^a
- niobium coil: MW field, f = 2.18 GHz
- resonance field: B=77.8 mT (gyromagnetic ratio: 28 GHz/T)
- oscillating resonance slice
 - → detection volume
- measurement of force on the cantilever
 → spin signal magnitude
 from the magnitude of variance in the time
 - record, directly related to the number of measured spins
 - → force correlation time describes the characteristic time for the net moment of the detected spins to decorrelate (spin transport, spin relaxation, etc.)

- force correlation time
- Monte Carlo simulation

flip-flop time T_{ff} =0.21 ms spin diffusion length L = 700 nm

PRL **112**, 126805 (2014)

Ultrashort Single-Wall Carbon Nanotubes Reveal Field-Emission Coulomb Blockade and Highest Electron-Source Brightness

A. Pascale-Hamri, S. Perisanu,* A. Derouet, C. Journet,† P. Vincent, A. Ayari, and S. T. Purcell *ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, F-69622 Villeurbanne, France* (Received 18 December 2013; published 26 March 2014)

Ultrashort Single-Wall Carbon Nanotubes Reveal Field-Emission Coulomb Blockade and Highest Electron-Source Brightness

- Coulomb blockade two tunnel junctions + island
- field emission + Coulomb blockade the most resistive junction is the vacuum barrier
- on-demand single electron source
- high brigthness is needed for experiments
- for a RT application: E_e > 25 meV

- periodicity of 8.5 V in the I(V) curve
- mechanical resonance frequency/capacitance

 → length
- current-induced shortening → period up to 80 V
- $C_1 \approx 100 C_2$
- I up to 1.8 uA