

pubs.acs.org/NanoLett

LETTER

Spin Polarization Measurement of Homogeneously Doped Fe_{1-x}Co_xSi Nanowires by Andreev Reflection Spectroscopy

John P. DeGrave,[†] Andrew L. Schmitt,[†] Rachel S. Selinsky,[†] Jeremy M. Higgins,[†] David J. Keavney,[‡] and Song Jin^{*,†}

[†]Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States [‡]Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States

> Gergő Fülöp NanoSeminar Journal Club 29/09/2011

Outline

- Nanowire growth
 - Homebuilt CVD system
- Compositional studies, origin of magnetism
 - Energy Dispersive Spectroscopy (EDS)
 - Atom Probe Tomography (APT)
 - X-ray Magnetic Circular Dichroism (XMCD)
- Device fabrication

 $P_{\rm s} = \frac{(N_{\uparrow} - N_{\downarrow})}{(N_{\star} + N_{\downarrow})}$

Electronic measurements

NW growth, EDS

- NW growth
 - 750 °C, 200 torr
 - Precursors:
 - Samples 1, 2: Trans-Fe(SiCl₃)₂(CO)₂, Co(SiCl₃)(CO)₄
 - Sample 3: Trans-Fe(SiCl₃)₂(CO)₂, CoCl₂
- EDS
 - determining x (cobalt cc.)
 - Fe_{1-x}Co_xSi

Atom Probe Tomography

- Principles
 - Field Ion Microscope + Time-of-flight Mass Spectrometer
 - 3D reconstruction with Å resolution
 - elemental mapping

Seidman, D. N.; Stiller, K. MRS Bull. 2009, 34, 717–724.

Atom Probe Tomography

- Fe_{1-x}Co_xSi
 - ≈500 000 ions collected
 - the Co is distributed homogeneously in the FeSi lattice

X-ray Circular Magnetic Dichroism

- XAS: X-ray Absorption Spectrum
 - measured by the total electron/fluorescence yield

X-ray Circular Magnetic Dichroism

- XAS: X-ray Absorption Spectrum
 - measured by the total electron/fluorescence yield
- XMCD: difference between LCP and RCP XAS signal
 - direct measurement of the spin-dependent DOS
 - synchrotron source (Argonne National Laboratory); T = 6 K, B = 2 T
 - dominance of Co XMCD signal (+ small Fe signal, unobservable Si signal)

Device fabrication

- Contact electrodes:
 - normal electrode: Ti/Au
 + 40 nm Al₂O₃ (to overcome the lithographic misalignment issue)
 - superconducting electrode: Nb
- Short channel: 200 nm

Measurements

- Andreev reflection
 - scattering peaks at $\pm \Delta_{Nb}$ (with finite width due to proximity related effects)
 - symmetric peak near zero bias

Measurements

Evaluation

- extraction of spin polarization:
$$P_s = \frac{(N_{\uparrow} - N_{\downarrow})}{(N_{\uparrow} + N_{\downarrow})}$$

from peak height: $G(0)/G_n = 2(1-P_s)$

- 1D modified Blonder-Tinkham-Klapwijk (BTK) model:

$$G(V) = \int_{-\infty}^{\infty} \frac{df(E - V, T)}{dV} [1 + A(E, Z) - B(E, Z)] dE$$

$$V_{\text{total}} = V_{\text{junction}} + V_{\text{nanowire}}$$

- A, B: from Strijkers et al.
- voltage drop, nonideal behaviour
 - \rightarrow additional fitting parameters

Average $P_s = 28 \%$ (highest $P_s = 35 \%$)

Thank you for your attention!