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I. INTRODUCTION

The Berry phase entered the lexicon of physics some
25 years ago.1 Since then, numerous physical applications
and experimental confirmations of this phase have been
found. There is an enormous literature on the subject, of
which I cannot give a complete account because only a small
part is known to me. A resource letter2 gives a much more
complete reference list up to 1996. A reprint volume3 with
commentary contains the pioneering papers including antici-
pations of the phase and related physics by Pancharatnam,4

Herzberg and Longuet-Higgins,5,6 Stone,7 and Mead and
Trulhar.8 We may nevertheless mention some other papers in
which the physical consequences of the phase are described.
Among the experiments, we note the rotation of the polar-
ization of light in a helical optical fiber,9 neutron spin rota-
tion in a helical magnetic field,10 and an NMR measurement
on protons.11,12 There are also many connections with effects
in solid state physics such as the quantization of the Hall
conductance in a periodic potential,13 the polarization of
ferroelectrics,14 and the anomalous velocity in semiclassical
electron dynamics.15 A more recent example is that of the
half-integer shift in the quantization condition for the quan-
tum Hall effect in graphene.16–18

There are several excellent expositions of the Berry phase,
or geometrical phase as it is also called. Berry’s original
paper1 is exceptionally lucid and strongly recommended. A
good explanation has been given by Holstein.19 Another su-
perb explanation is given by Shankar,20 who especially clari-
fies the role and effects of this phase in the Born–
Oppenheimer approximation.

The purpose of this paper is to discuss a slightly more
intricate example of Berry’s phase than is usually encoun-
tered. Of the articles intended for a general audience of
which I am aware, none go beyond the example of a spin in
a slowly time-dependent magnetic field. Further, these papers
focus mainly on the Berry potential A, whose line integral in
parameter space gives the geometrical phase.21 We shall at-
tend more to the Berry curvature given by the generalized
curl or exterior derivative of this potential. Also, the math-
ematical and physical structures that Berry’s phase entails are
very rich, and the simple spin example does not capture them
fully. For example, the integral of the Berry curvature over a
closed surface is guaranteed to be an integer multiple of 2�.
The integer, known as the Chern number, is a topological
invariant. For the simple example, it turns out to be �1. In
so far as one learns physics more effectively through ex-

ample and counterexample, anyone who encounters the gen-
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eral theorem about the Chern number is bound to be curious
about problems where higher numbers arise.22 I have not
been able to find any such example, however.

It was this motivation that led me to the example pre-
sented here. In this example the degeneracy is twofold, but
the Chern number is �2. In discussing it, I found myself
invoking basic Berry phase concepts repeatedly, and so I
have included a review of these concepts. One could equally
well read the papers of Berry1 or Holstein,19 for example, but
it is useful to have all of the results in one place in uniform
notation. I also discuss related issues such as the codimen-
sions of degeneracies and some of the subtle points about
single-valuedness and analyticity of the wave functions, as
students often find these confusing.

The paper is written at a level suitable for graduate stu-
dents or advanced undergraduates. There is much quantum
mechanics to be learned. In addition to the Berry phase no-
tions themselves, the example entails perturbation theory for
the case where a degeneracy is not lifted until the second
order. The energies are needed to second order, and the wave
functions are needed to first order. This case tends be dis-
cussed only in relatively advanced texts.23,24

The plan of the paper is as follows. The review is con-
tained in Sec. II. Expert readers can skip this section. The
example with Chern number �2 is given in Sec. III. In Sec.
IV I briefly discuss magnetic molecular solids, a class of
materials which have been the subject of much recent study,
and which display degeneracies and associated Berry phase
physics in abundance. The spin Hamiltonians that arise in
studying these systems are similar to the example in Sec. III.
In Sec. V I present a few exercises that students may enjoy.
The more difficult ones could even form the basis of short
study projects. Alternative treatments of the codimensions of
degeneracies and of the Berry curvature for the example in
Sec. III are given in the Appendixes.

II. REVIEW OF BASIC BERRY-PHASE CONCEPTS

In this section we review the key ideas behind Berry’s
phase using a notation close to his original one.1 We consider
a quantum system with Hamiltonian H�R�, which depends
parametrically on variables, R1 ,R2 , . . ., denoted collectively
by the vector R. We shall write most formulas as if R
were three dimensional, but this is done merely for conve-
nience, and the arguments hold equally well for higher di-

25
mensional R.
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A. Adiabatic transport and the Berry phase

Let us now suppose that R can be varied with time, and
this variation is so slow as to allow the adiabatic approxima-
tion. Let �n�R�� denote the eigenstates of H�R�,

H�R��n�R�� = En�R��n�R�� . �1�

We shall refer to this as the snapshot basis because it is found
by freezing R at a particular value, as in a snapshot. Berry
showed that if R is taken around a closed loop C so that
R�t=0�=R�t=T�, and if the initial state is �n�R�0���, then
provided the system does not pass through any degeneracies,
the final state at time T is

ei�nei�n�n�R�T��� . �2�

Because R�T�=R�0�, the system returns to its original state,
as mandated by the adiabatic theorem, but modulo the phase
�n+�n. The part �n is the dynamical phase,

�n = −
1

�
�

0

T

En�R�t��dt . �3�

The other part is the Berry phase,

�n = i�
0

T

�n�R�t���
d

dt
�n�R�t���dt . �4�

The key point is that �n is purely geometrical, independent of
how slowly the loop in R space is traversed. To see this, we
write

d

dt
�n�R�t��� = 	

i

�

�Ri
�n�R��

dRi

dt
= �R�n�R�� ·

dR

dt
, �5�

where we have adopted three-dimensional vector notation in
the last form. It is further convenient to put the gradient
operator inside the ket and write

�R�n�R�� 
 ��Rn�R�� . �6�

By substituting this result into Eq. �4�, we obtain

�n = i�
0

T

�n�R���Rn�R�� ·
dR

dt
dt . �7�

But now we can cancel the dt’s and write �n purely in terms
of an integral in parameter space,

�n�C� = i�
C

�n�R���Rn�R�� · dR . �8�

We show the dependence of �n on the loop in the R space
explicitly in Eq. �8�.

The second point is that �n cannot be gauged away. If we
multiply �n�R�� by exp�i��R��, where ��R� is single-valued,
a term i�R��R� is added to the integrand for �n, but this
term integrates to zero. This point can be stated in a more
familiar language if we introduce the vector-potential-like
object,

An�R� = i�n�R���Rn�R�� . �9�

Equation �7� then resembles the Aharonov–Bohm phase for a
particle moving around a closed loop in a magnetic field

described by a vector potential An�R�,
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�n�C� = �
C

An�R� ·
dR

dt
dt . �10�

Vector potentials are not gauge invariant, but the Aharonov–
Bohm phase is. The quantity An�R� is now known as the
Berry vector potential or the Berry connection.26 The latter
terminology arises because An�R� describes how to relate or
connect the kets �n�R�� and �n�R+dR�� at two nearby points
in parameter space. The phase �n�C� is viewed as the an-
holonomy associated with this connection.27

B. The Berry curvature

It is now clear how to write �n in a manifestly gauge
invariant way. If we define the magnetic-field-like object,

Bn�R� = �R � An�R� , �11�

which is known as the Berry curvature, then by Stokes’ theo-
rem we may write �n as a surface integral,

�n�C� =� �
S

Bn�R� · dS , �12�

where S is any surface spanning C. Since Bn is gauge invari-
ant, so is �n�C�. Why Bn is called a curvature is discussed in
the following. Also, note that the dimensions of Bn are �R�−2,
where �R� is the dimension of R.

It thus follows that the Berry curvature is an intrinsic
property of the way in which the entire ray in Hilbert space
associated with �n�R�� twists and turns as R is varied. An
extremely interesting question now arises. If we think of Bn
as a magnetic field, what are the sources of this field? Equa-
tion �11� shows that �R ·Bn�R�=0 just as for a true magnetic
field, so the sources must have physical significance. To find
them, we need to write Bn in two other forms. We first note
that we may also write �employing an obvious abbreviated
notation�

An = − Im�n��n� . �13�

The imaginary part restriction can be understood as follows.
Since �n�R�� is normalized for all R, applying the gradient to
the relation 1= �n �n� gives

0 = ��n�n� = ��n�n� + �n��n� . �14�

Here, ��n� stands for ��n� in analogy to Eq. �6�. More ex-
plicitly, let �m� be a complete set of fixed �R-independent�
basis states. Then,

�n�R�� = 	
m

cm�R��m�, cm�R� = �m�n�R�� . �15�

Therefore,

��n� = 	
m

� cm�R��m� . �16�

Similarly,

��n� = 	
m

� c
m
*�R��m� . �17�

The two terms on the right-hand side of Eq. �14� are seen to
be complex conjugates, from which it follows that each of
them is pure imaginary, and Eq. �13� follows in turn. Equa-

tions �9� and �13� then show that �n�C� is real, as it should
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be. It follows that the Berry potential and curvature are also
real.

The curl of Eq. �13� yields

Bn = − Im��n� � ��n� �18�

since �� ��n�=0. This is the first form for Bn. It is useful
for calculations, and it also shows that Bn is explicitly gauge
invariant. For if we change �n� to ei��n�, the additional terms
involving �� vanish due to Eq. �14�. Lastly, it also shows
that � ·Bn=0.

To obtain the second form for Bn, let us insert a resolution
of unity as a sum over the complete set of snapshot basis
states in Eq. �18�. This gives

Bn = − Im 	
n��n

��n�n�� � �n���n� . �19�

The term with n�=n has been omitted from the sum, as it has
no imaginary part. To find �n� ��n�, let us take the gradient
of Eq. �1� and project onto �n��R��. This yields

�n�� � H�n� + �n��H��n� = �n�� � En�n� + �n��En��n� .

�20�

We invoke �n��H=En��n�� and simplify and obtain

�n���n� =
�n�� � H�n�

En� − En
�n� � n� . �21�

Feeding this result into Eq. �19� leads to the second form

Bn = − Im 	
n��n

�n� � H�n�� � �n�� � H�n�
�En� − En�2 . �22�

This form shows that Bn is singular at points of degeneracy
in parameter space where the energy denominators vanish
since the off-diagonal matrix elements of �H will generally
not vanish at the same points. These points are like magnetic
monopole sources of B. They are not the only sources be-
cause ��B�0, so there must also be currents flowing
through the parameter space. They are the most interesting,
however, as there are strong topological constraints on them.

C. Codimensions of degeneracies

The first problem that therefore arises is to find an R
where a degeneracy exists. It is not immediately obvious that
such points are rare. At first sight, the condition E1�R�
=E2�R� would seem to require the variation of just one pa-
rameter, and so if R lives in a three-dimensional space, de-
generacies would seem to lie on two-dimensional surfaces.
This conclusion is incorrect. A classic theorem due to von
Neumann and Wigner28 and Teller29 states that to find a
double degeneracy other than one allowed by a symmetry of
the Hamiltonian, we must tune two parameters if the Hamil-
tonian is real symmetric, and three if it is complex Hermit-
ian. We give Teller’s argument for the latter case.30,31 Let us
seek a degeneracy between two states �1�R�� and �2�R��.
Suppose that the states �n�R��, n�3, orthogonal to the first
two are already known. Let ���R�� and �	�R�� be two fixed
states orthogonal to each other and to �3�R�� , �4�R�� , . . .. The
problem of finding the energy eigenstates �1�R�� and �2�R��

then reduces to diagonalization of the 2�2 matrix
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H = �H���R� H�	�R�
H	��R� H		�R�


 . �23�

Naturally, H	��R�=H
�	
* �R�. For the eigenvalues of this ma-

trix to be equal, it must be similar to an identity matrix
�times a constant�. In other words, we must satisfy the three
conditions

H���R� = H		�R� ,

Re H�	�R� = 0, �24�

Im H	��R� = 0,

which requires, in general, that at least three tunable param-
eters be available. If H�	�R� is real, at least two parameters
are needed. More formally, the codimensions of a degeneracy
are 3 and 2 for the two cases, respectively. In particular, for
three-dimensional R, and a complex Hermitian Hamiltonian,
degeneracies will occur only at isolated points in the
R-space.

The previous argument implicitly assumes that there is no
symmetry which ensures that H�	�R� vanishes for general R.
It does not, however, preclude the existence of a symmetry at
the degeneracy point itself.

D. The diabolo

The simplest and most generic degeneracy involves just
two states. It follows from Eq. �22� that near the degeneracy
point, we may ignore all other states and truncate the Hamil-
tonian to a 2�2 matrix. �Or, we can invoke the argument
used to arrive at Eq. �23�.� Without any loss of significance,
we can shift the origin of R to the degeneracy, shift and scale
the units of energy, and rotate and scale axes in R so that the
Hamiltonian reads

H = −
1

2
� Z X − iY

X + iY − Z

 . �25�

Here, X, Y, and Z are the components of R. This form is the
most general because the off-diagonal elements must be
complex conjugates and is independent of the diagonal ele-
ments, which can be taken to add to zero by a shift in the
zero of energy. Equation �25� is the Hamiltonian of a spin
−1 /2 in a magnetic field. If the energy levels are denoted by
E�= � �R� /2, then it is easy to show that

B+ = − B− = −
R

2R3 . �26�

�The derivation involves simple Pauli matrix algebra and is
given by Berry.1�

Degeneracies of the type just discussed have been termed
diabolical points by Berry and Wilkinson32 because the en-
ergy surfaces as a function of X and Z form a double cone,
which reminded them of a yo-yo-like Italian toy called the
diabolo. At one time, the term conical intersections was used
�see the title of Ref. 8, for example�, but it has fallen out of
favor.33 We shall refer to all double degeneracies as diaboli-
cal even when the energy surfaces are of different form.

The field �26� is that of a monopole at R=0. Away from
the monopole, � ·B+=0. To find the strength of the mono-
pole, we find the flux over any closed surface surrounding it.

If we choose a sphere �simplest�, we obtain
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Q+ = −
1

2�
� � − R

2R3 · dS = 1. �27�

The prefactor of −1 /2� is conventional.

E. The Chern number

The result �27� illustrates one of the key properties of the
Berry phase. It is a remarkable fact that the monopole
strength,

Qn = −
1

2�
� Bn�R� · dS , �28�

must be an integer �known as the Chern number� for any n
�that is, for any of the snapshot states� and for any surface.
Secondly, for the states involved in any degeneracy,

	
n

Qn = 0. �29�

These facts clearly hold for the simple example we have
discussed. Another example �also given by Berry� for which
they are again easily verified is

H = − 
J · H , �30�

where 
 is a magnetic moment, J is a �dimensionless� spin-j
angular momentum and H is a �true� magnetic field. In this
case,

Bm�H� = − m
H

H3 , �31�

where m=−j ,−j+1, . . . , j. We now get Qm=2m, which is an
integer as promised.

It should be noted that the Chern number is dimensionless,
irrespective of the dimensions of R. In the example �30�, R
is a real magnetic field, and the Berry magnetic field �or
curvature� has dimensions of the inverse square of the real
magnetic field. The flux of the former through a two-
dimensional surface in the space of the latter is therefore
dimensionless. In many examples and applications of the
Berry phase, the parameter is a magnetic field, and keeping
these points in mind helps distinguish the Berry magnetic
field from the true one.

We now discuss why the Chern number must be an inte-
ger. The argument is basically the same as that given by
Dirac in his proof that the existence of a �true� magnetic
monopole implies the quantization of electric charge.34 The
first point is that the vector potential describing the mono-
pole must be singular at at least one point on any surface
surrounding the monopole. Let us consider an infinitesimal
disk shaped patch on the surface and suppose that A is non-
singular on it. The flux through this patch is given by the line
integral of A over C, the loop bounding the patch. We now
make C bigger and assume that no singularities of A are
encountered �see Fig. 1�. The flux through the loop will
grow. If we keep making the patch bigger and bigger until it
essentially becomes the entire surface, C will become an
infinitesimal loop on the opposite side of the surface from
where we started. Since the flux through the patch is now
essentially equal to the total flux emanating from the mono-
pole, and the length of the loop is very small, A must be very
large in magnitude. As the loop length shrinks to zero, A
must diverge. It is, of course, possible for A to be singular in

other ways, and the argument we have given concentrates the
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singularity at one point. By joining together the singular
points on every surface surrounding the monopole, we obtain
the famous Dirac string. This singularity can be moved
around by changing the gauge, but it cannot be completely
eliminated.

Let us now consider the loop C when it has been shrunk to
an infinitesimal one around the string. Then, by the argument
just given,

�n�C� = �
S

Bn · dS = − 2�Qn. �32�

But the string is a fiction; it is not a physical object. And it is
also obvious that adiabatic transport around an infinitesimal
loop cannot really change the state. Therefore, it must be that
the phase is unobservable �even by interferometric means�,
and we must have

ei�n�C� = 1, �33�

which implies that

Qn = integer. �34�

F. Analyticity of adiabatic wave functions

An issue closely related to the singularity of An is that it is
not possible to write a single expression for the snapshot
basis �n�R�� in a way that is nonsingular everywhere in R.
Take, for example, the Hamiltonian �25�. If we introduce
spherical polar coordinates in R-space �Z=R cos �, X
=R sin � cos �, Y =R sin � sin ��, we find that one choice for
the state �−,R� is

�− ,R� = � cos 1
2�

ei� sin 1
2�

 . �35�

The term ei� sin 1
2� is singular at the south pole, and if we

calculate A−, we will discover a Dirac string there. We can
multiply this state by a globally analytic phase factor ei��R�,
but if we are to eliminate the singularity at the south pole, we

1

2

3

4

M

Fig. 1. Why the Chern number is an integer. An initially infitesimal loop 1
is expanded to cover more and more of the surface �loops 2 and 3� surround-
ing the degeneracy �M� until it covers essentially the entire surface �4�. The
Berry phase, given by the flux through the loop grows from 0 to an integer
multiple of 2� because in the final configuration �4�, adiabatic transport of
the wave function around the loop must not lead to any change in the wave
function.
must have ��R�=−��R�+���R�, where ���R� is nonsingu-
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lar, but now the other element of the column vector is singu-
lar at the north pole.

We note in passing that Eq. �35� gives the spin-coherent
state for a spin− 1

2 particle with maximal spin projection
along the direction �� ,��. Our argument shows that a single
analytic expression cannot cover the entire sphere. The mod-
ern approach is to divide the sphere into two patches, one
surrounding each pole, and extending past the equator into
the other hemisphere up to some latitude short of the other
pole. We can then define states analytic in each patch, and
related by a gauge transformation �or transition function� in
the overlap of the two patches. Requiring the gauge transfor-
mation to be analytic is another way of seeing that the Chern
number must be quantized.

The need for more than one coordinate patch also shows
up in an older argument of Herzberg and Longuet-Higgins5,6

concerning real symmetric Hamiltonians. They proved that if
the adiabatic wave function of a state reverses sign as a
closed contour is traversed, that contour necessarily contains
a degeneracy. The conditions of this theorem are met in ex-
ample �25� if we set Y =0. Then under a circuit enclosing the
origin in the XZ plane, the Berry phase is �� because the
flux of B+ or B− through a hemispherical surface �or one with
the topology of a hemisphere� is half the flux through a
closed surface by symmetry, and thus equal to ��. Since
e�i�=−1, the theorem is verified. To see this explicitly, we
can use the state �35� and see how it changes as we go in a
circle in the x-z plane. Suppose we start along the +z axis, so
the initial state has the bra vector �1 0�. We go clockwise, so
that x starts out becoming positive. That is, � increases and
�=0, and the state is �cos 1

2� sin 1
2��. As we approach the −z

axis, �→�, so the state approaches �0 1�. As the −z axis is
crossed, x becomes negative, � jumps to �, so the state must
be taken in the form �−cos 1

2�−e−i� sin 1
2��

= �−cos 1
2� sin 1

2�� to maintain continuity at �=�. As we keep
going around the circle, � decreases, until it approaches 0 as
we return to the +z axis. The state however returns to �−1 0�,
showing that the sign has reversed.

We note that the sign need not change for degeneracies
with higher Chern numbers, but a globally analytic wave
function is still not possible.

G. Why “curvature”?

Next, we explain why Bn is called a curvature by making
an analogy with curved surfaces. Let us consider an arbitrary
point on an ordinary surface embedded in three-dimensional
Euclidean space. Let us choose a coordinate system with its
origin at this point, and with the outward normal n̂ aligned
with the z axis. Further, let us align the x and y axes with the
two directions of principal curvature. Then, near the origin,
the equation of the surface is given by

z = − 1
2 �
1x2 + 
2y2� , �36�

where 
1 and 
2 are the principal curvatures. Their product
gives the Gaussian curvature, K, of the surface at the point in
question,

K = 
1
2. �37�

But, we can also derive K as follows. For very small x and y,

the normal to the surface is given by
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n̂ = ẑ + 
1xx̂ + 
2yŷ . �38�

Therefore,

dn̂

dx
= 
1x̂,

dn̂

dy
= 
2ŷ �39�

and

dn̂

dx
�

dn̂

dy
= Kẑ . �40�

The similarity between this equation and Eq. �18� is why Bn
is called a curvature.35 Further, the quantization of the Chern
number is analogous to the Gauss–Bonnet theorem, accord-
ing to which the integral of the Gaussian curvature over any
closed surface equals 2� times the Euler characteristic of
that surface.36 We recall that the latter depends only on the
topology of the surface: it is 2 for a sphere, 0 for a torus, −2
for a sphere with two handles, and so on. The Chern number
is similarly topological.

III. THE EXAMPLE

The example Hamiltonian we study is

H̄ = k�1 − Jz
2� − g
BJ · H . �41�

It describes a spin−1 degree of freedom, such as a magnetic
ion in a solid. J= �Jx ,Jy ,Jz� are dimensionless spin−1 opera-
tors, g is a g-factor, 
B is the Bohr magneton, and H is an
external magnetic field. We imagine that because of the solid
environment, different spin orientations are not equal in en-
ergy and k is a constant that describes this anisotropy. We
take k�0, which makes the anisotropy of the easy axis or

Ising type. Our goal is to find how the eigenstates of H̄
change as H is varied and thus find the Berry curvature
B�H�. The role of the parameter R in Sec. II is now played
by H, which is also three dimensional.

To avoid clutter in the formulas, we measure energy in

units of k, define H=H̄ /k, and the scaled field

R = �g
B/k�H = �X,Y,Z� . �42�

This notation makes it easy to apply the formulas of Sec. II.

Because H̄ is rotationally symmetric about the z axis, it
suffices to solve the eigenvalue problem for R in the x-z
plane, that is, set Y =0. In the standard Jz basis, the Hamil-
tonian matrix is then

H =�
− Z −

X
�2

0

−
X
�2

1 −
X
�2

0 −
X
�2

Z
� . �43�

There are three diabolical points in the magnetic field
space, all on the z axis. When Z=1, the states |0� and �−1� are
degenerate, where �m� denotes the eigenstate of Jz with ei-
genvalue m. Likewise, when Z=−1, the states |0� and |1� are

degenerate. Finally, when Z=0, the states ��1� are degener-
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ate. The first two diabolical points are of the simplest type,
with Q= �1. It is the third we wish to focus on, because it
has Q= �2.

Our goal, therefore, is to find the states and energies by
perturbation theory when both X and Z are small. As we shall
see in the following, we need the states up to first order and
the energies up to second order in the perturbation. That we
have two small parameters in which we may expand would
appear to be an advantage, but the difficulty is that the de-
generacy of the states ��1� is broken only in second order in
X, and it does not pay to assume X�Z or Z�X as we will
eventually need to consider all orientations of R around R
=0.

To first order in X and Z, the states are �we denote the
perturbative state developing from �m� by �m*��

�1*� = �1� +
X
�2

�0� ,

�0*� = �0� −
X
�2

��1� + �− 1�� , �44�

�− 1*� = �− 1� +
X
�2

�0� ,

and the energies are

E0 = 1, E�1 = � Z . �45�

Because Z is assumed small, however, the degeneracy of
��1� is essentially not resolved, and the next order of per-
turbation theory will mix these states strongly. Thus, the pre-
vious results for ��1*� and E�1 are not of much use. The
correct procedure is to diagonalize the second-order secular
matrix added to the first-order one.23 We reprise the main
formula for a general situation. Let n, n�, n�, etc., label a
group of states that remain degenerate or nearly so to first
order. Let the perturbation be denoted by V. Then up to sec-
ond order, the secular matrix is given by

Vnn�
�2� = Vnn� + 	

m�n,n�,. . .

VnmVmn�

En − Em
. �46�

The sum excludes not only the states n and n�, but all states
in the �nearly� degenerate group, so the energy denominator,
which is formed from the unperturbed energies, never be-
comes small or zero. In our case the secular matrix is easily
found to be

V�2� = − 1
2X21 + � − Z − 1

2X2

− 1
2X2 Z


 . �47�

The eigenvalues of V�2� give the energies of the states to
second order. We have

E� = − 1
2X2 � D , �48�

where the state labels have been changed to � and �, and
where

D = �Z2 + 1
4X4�1/2. �49�

The states themselves are the eigenvectors of V�2�. Writing

Z = D cos �, 1
2X2 = D sin � , �50�
we have
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�− � = cos 1
2��1*� + sin 1

2��− 1*� , �51�

�+ � = sin 1
2��1*� − cos 1

2��− 1*� . �52�

The key point is that on the right-hand side we must use the
first-order states ��1*� from Eq. �45�, and not the bare states
��1�. One way to see this is that otherwise �� � would not
be orthogonal to �0*�. �A more systematic way is given in the
suggested exercises.�

Combining Eqs. �45� and �52�, we obtain the states in the
original Jz basis. To save writing, we introduce the notation

c = cos 1
2�, s = sin 1

2� . �53�

Then,

�− � = c�1� +
X
�2

�c + s��0� + s�− 1� , �54�

�0*� = −
X
�2

�1� + �0� −
X
�2

�− 1� , �55�

�+ � = s�1� −
X
�2

�c − s��0� − c�− 1� . �56�

For completeness, we also give E0 to second order

E0 = 1 + X2. �57�

We now have all the ingredients needed to calculate the
Berry curvatures B� and B0. We calculate B+ using Eq. �18�
below and using Eq. �22� in Appendix B.

To use Eq. �18� we need to find ��+�, for which we need
|�� at points outside the x-z plane. To this end, let us intro-
duce the azimuthal angle � in the x-y plane such that �=0 on
the x axis, and jumps from +� to −� as we cross the −x axis
in the anticlockwise sense. Then, since

e−iJz�Jxe
iJz� = cos �Jx + sin �Jy , �58�

it follows that

H�X,Y,Z� = e−iJz�H�R�,0,Z�eiJz�, �59�

where R�= �X2+Y2�1/2. The energy eigenstates for Y �0 can
thus be obtained by acting on those for Y =0 with the opera-
tor e−iJz�. The energies are, of course, unchanged. In this way
we get

�+ � = se−i��1� −
R�

�2
�c − s��0� − cei��− 1� . �60�

Taking the gradient now gives

�1��+ � = �− is � � + 1
2c � ��e−i�, �61�

�0��+ � = −
1
�2

�c − s� � R� +
R�

2�2
�c + s� � � , �62�

�− 1��+ � = − �ic � � − 1
2s � ��ei�. �63�

The contributions to Im��+�� ��+� from the various �m�
states may now be calculated and are

m = 1: cs � � � �� , �64�
m = 0: 0, �65�
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m = − 1: cs � � � �� . �66�

Thus,

B+ = − 2cs � � � �� . �67�

It is enough to evaluate this in the x-z plane. Near this plane,
��Y /X, so on it,

�� =
1

X
ŷ . �68�

Further, since 2cs=sin �,

2cs � � = − ��cos �� = − �
Z

D
=

X4ẑ − 2ZX3x̂

4D3 . �69�

Hence,

B+ =
X2

4D3 �Xx̂ + 2Zẑ� . �70�

We stress that this formula is only valid sufficiently close to
the degeneracy at R=0. We leave it to the reader to verify
that B0=0 and B−=−B+.

We can now find the Chern number Q+ for |��, that is, the
flux of B+ through a surface surrounding the origin. We take
the surface to be a cylinder with axis along ẑ, of radius R,
and extending from Z=−L to Z=L. Denoting the distance
from the z axis by r, we find the contribution to Q+ through
the top end of the cylinder to be

Q+,top = −
1

2�
�

0

R r2L

2�L2 + 1
4r4�3/22�rdr . �71�

If we change the variable of integration to r4 /4, the integral
can be easily done and yields

Q+,top = − 1 +
L

�L2 + 1
4R4�1/2 . �72�

The contribution from the bottom of the cylinder is the same
by symmetry. From the sides of the cylinder, we get

Q+,sides = −
1

2�
�

−L

L R3

4�Z2 + 1
4R4�3/22�RdZ . �73�

This integral is also elementary and yields

Q+,sides = − � Z

�Z2 + 1
4R4�1/2�

−L

L

= − 2
L

�L2 + 1
4R4�1/2 . �74�

Adding up all the pieces, we get, as advertised,

Q+ = − 2. �75�

Again, we leave it to the reader to verify that Q0=0 and
Q−=2.

We now discuss the analyticity of the state |�� in the
R-space. We reproduce the two wave functions �56� and �60�
for this state for ready reference:

�+1� = s�1� −
X

�c − s��0� − c�− 1� , �76�
�2
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�+2� = se−i��1� −
R�

�2
�c − s��0� − cei��− 1� . �77�

The form �+1� only applies when R is in the x-z plane, while
�+2� applies for all R. Let us now consider two points in the
x-z plane at the same value of Z�0, but opposite values of
X, and call them A and B. Let X�0 at A, so that at A, �+2�
= �+1�. If we employ �+2� and go from A to B via a 180°
rotation about ẑ, we get −�+1�, with an extra minus sign. To
avoid this sign, we can take the wave function as

�+3� = s�1� − ei�R�

�2
�c − s��0� − ce2i��− 1� , �78�

which is identical to �+1� in the x-z plane and applies for all
R.

Both �+2� and �+3� are singular at both poles, illustrating
the general comments in Sec. II F. Readers are invited to find
the corresponding Berry potentials and see how these singu-
larities show up there.

We can also try and execute a Herzberg and Longuet-
Higggins circuit in the x-z plane because the Hamiltonian is
then always real. The form �+1� is the one to use. As in Sec.
II F, we go around in a clockwise circle starting on the z axis.
On this axis, �+1�=−�−1�. As we keep increasing X, the state
changes until at A it has the form

�+1�A�� = a�1� + b�0� + c�− 1� , �79�

with some coefficients a, b, and c. When we reach the −z
axis, �=�, so the state is |1�. There is no jump in the form of
�+1� as we cross this axis. Since � has the same value at A
and B, at B �+1� has the form

�+1�B�� = a�1� − b�0� + c�− 1� , �80�

and it returns to −�−1� as we return to the z axis. In other
words, there is no sign reversal, consistent with Q+=−2.
There is no contradiction with the general theorem because
sign reversal is only a sufficient condition for there to be a
degeneracy inside the circuit.

IV. MAGNETIC MOLECULAR SOLIDS

Spin Hamiltonians of the same general flavor as discussed
in Sec. III arise in many magnetic molecular solids. These
systems have been intensively studied in the past decade or
so.37 Broadly speaking, these are molecular solids of organic
molecules in which there is a core of magnetic ions �Mn3+,
Fe2+, etc.�, giving a net spin �and magnetic moment� to the
entire molecule. The magnetic interactions between the mol-
ecules are weak and may be neglected so that one is justified
in studying the one-body or single molecule problem. The
solid state environment is anisotropic, giving rise to Hamil-
tonians such as Eqs. �41� and �81�.

It is not the purpose of this paper to discuss the many
fascinating physical phenomena that these systems display.
They are mentioned here because diabolical points have been
experimentally observed in several such solids. The best
studied material is based on the spin 10 molecule
��tacn�6Fe8O2�OH�12�8+ �abbreviated to Fe8� in which a
whole array of such points is seen.38,39 An approximate

model Hamiltonian for this system is
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H = − k2Jz
2 + �k1 − k2�Jx

2 − g
BJ · H , �81�

in which k1�k2�0 are measured anisotropy energies, and g
and 
B are the g-factor and Bohr magneton. This model pos-
sesses a remarkable set of diabolical points in the Hx-Hz
plane �see Fig. 2�. The points lie on a series of concentric
rhombi, forming a perfect centered rectangular lattice.40 All
the diabolical points are of the simplest type with Chern
numbers �1. However, many of the points are multiply dia-
bolical; that is, more than one pair of levels is simultaneously
degenerate at the same value of Hx and Hz. The diabolical
points on the Hx or Hz axes can be understood in terms of
symmetry, but the others cannot. For a given spin magnitude
J, there are

2
3J�J + 1��2J + 1� �82�

diabolical points in all. It is tempting to speculate that the
Hamiltonian possesses an additional “hidden” symmetry, but
that is so far unproven.

A more accurate model for Fe8 includes a correction term
to Eq. �81� that is proportional to �J+

4 +J−
4�. This term destroys

the beautiful lattice structure we have described, but it gives
rise to other equally beautiful phenomena. For example, as
the strength of this term is varied, diabolical points merge
and resplit,41–43 but the total number of points in the three-
dimensional H space does not change. Alas, the
experiments38 can see only a handful �15–20� of the 1540
predicted by theory!

Some of these features are explored for J=1 in problems
�6� and �7�.

V. SUGGESTED PROBLEMS

�1� Since the integral of the approximation �70� for B+ over
the cylinder is independent of the dimensions of the cyl-
inder, this approximation must be divergence-free. Verify
directly that � ·B+=0.

�2� Equation �45� defines a unitary transformation whose
matrix elements are Um�m= �m� �m*�. Construct the
Hamiltonian in the �m*� basis by calculating UHU† and
neglecting terms higher than second order in X and Z.
Show that the transformed Hamiltonian is block diagonal
with m*=0 being one �1�1� block, and m*=1 and

*

Hx

Hz

3 2 14

Fig. 2. Diabolical points for the Hamiltonian �81� for J=7 /2. All points on
the outermost rhombus are singly diabolical, those on the next one are
doubly diabolical, and so on. The origin is quadruply diabolical.
m =−1 forming a 2�2 block. You should find that the
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2�2 block is identical to Eq. �47�. The eigenvectors of
this block must naturally be written as linear combina-
tions of ��1*�, yielding Eq. �52�.

�3� Find the codimension of a triple degeneracy using both
Teller’s argument and that in Appendix A. Do this for the
real symmetric and complex Hermitean cases separately.

�4� The Hamiltonian �43� also has degeneracies at Z= �1,
X=Y =0. Show that these degeneracies are of the simple
diabolical type and find the associated Berry curvatures
and Chern numbers.

�5� Consider the Hamiltonian �43� for �R��1 and find the
Berry curvature of the highest energy level by treating
the �1−Jz

2� term as a perturbation. �It will pay to rotate
the coordinate system so that the z axis is along R and to
use symmetry.� Find the Chern number by integrating
the curvature so found over a sphere with �R��1. Is your
answer the same as that found by adding the Chern num-
bers for the same level around the degeneracies in prob-
lem �4�? Is it the same as for the highest level of the
Hamiltonian �30�? If yes, why, and if not, why not?

�6� �More difficult�. Add to the Hamiltonian �43� another
term

H� = k��Jx
2 − Jy

2� , �83�

with k��0. If you perform second-order perturbation
theory as in Sec. III with k� as an additional small pa-
rameter, you should discover the following condition for
diabolicity,

Z = 0, X2 + Y2 = �2k�. �84�

But this cannot be correct. It violates the von Neumann–
Wigner–Teller theorem on the codimension of a double
degeneracy, as the total Hamiltonian is not invariant
about the z-axis rotations. The problem might be re-
solved by higher order perturbation theory, but that is
rather difficult. Solving the characteristic equation �a cu-
bic� is also very difficult. A better approach is as follows.
Rewrite the Hamiltonian on the Jx basis �or, equivalently,
rotate by 90° about ŷ� and set Y =Z=0. All three eigen-
values are now easily found and you should find a de-
generacy at

X* = �2k��1 + k���1/2, �85�

with an energy E*=−k�. This result is exact, and the
degeneracy is guaranteed to be an isolated point by the
theorem on codimensions. �a� Is the degeneracy so found
allowed by a symmetry of the Hamiltonian? �b� Where is
the degeneracy when k��0? �c� Draw the degenerate
manifold in the k�, X, Y space with Z=0. Is the theorem
on codimensions of degeneracies being violated?

�7� �More difficult still�. This problem is for readers not sat-
isfied that the degeneracy point in problem �6� is iso-
lated. Do not set Y and Z to zero, but treat them as
perturbations along with �X=X−X*. Do degenerate per-
turbation theory in the space of the crossing energy lev-
els. You should find that the energies are given by

E� = E* + a��X� � �b��X�2 + cY2 + dZ2�1/2, �86�

where a, b, c, and d are constants, all of which except a
are positive. This is the characteristic form of the

diabolo.
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APPENDIX A: ALTERNATIVE ARGUMENT FOR
THE CODIMENSION OF A DIABOLO

The argument given in Sec. II C requires one to use a
representation for the Hamiltonian in which all but two of
the off-diagonal elements vanish. Many people find this un-
settling because it seems to imply that we know how to solve
the eigenvalue problem in the first place. We therefore give
an alternative argument, which extends Arnold’s proof30 to
the case of a complex Hermitian matrix.

Let the matrix be of order n. The general Hermitian matrix
of this order has n real numbers on the diagonal, and �n2

−n� /2 pairs of complex conjugate numbers off the diagonal.
The total number of real numbers needed to specify the ma-
trix is therefore

n + 2 �
1

2
�n2 − n� = n2. �A1�

We can also say that the space of complex Hermitian matri-
ces of order n has dimension n2.

Let us now ask how many free parameters there are if the
matrix is to have one double degeneracy. We first look at the
eigenvectors, numbering them from 1 to n, with the degen-
erate ones being numbers n−1 and n. The first eigenvector is
specified by giving 2n real numbers, but normalization and
an overall phase remove 2 of them, leaving us with 2n−2
free parameters. In the same way, the second eigenvector
also gives 2n−2 parameters, but 2 are constrained by the
need for it to be orthogonal to the first, leaving us with 2n
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−4 free parameters. The third vector has 2n−6 free param-
eters, and so on, until we come to the third last eigenvector
which has 4 free parameters. There is no freedom to choose
the last two eigenvectors because they span the degenerate
space, and any linear combination is equally good. Thus, the
number of parameters we may vary in specifying the eigen-
vectors is

2�n − 1� + 2�n − 2� + ¯ + 4 = 1
2 �n − 2��2n − 2 + 4�

= n2 − n − 2. �A2�

Next, let us consider the eigenvalues. There are n−2 nonde-
generate eigenvalues, and one degenerate eigenvalue, lead-
ing to n−2+1=n−1 free parameters. Thus, the dimensional-
ity of the space of matrices with one degeneracy, which is the
total number of parameters that may be varied freely without
destroying the degeneracy is

�n2 − n − 2� + �n − 1� = n2 − 3. �A3�

Hence, the codimension of the degeneracy, the number of
parameters that must be tuned, is n2− �n2−3�, which is equal
to 3, as found in Sec. II C.

APPENDIX B: ALTERNATIVE CALCULATION
OF BERRY CURVATURE

It is interesting to calculate the Berry curvature B+ for the
example in Sec. III using Eq. �22�. The sum on n� runs over
the states �0*� and |��, but since E+−E0 does not vanish at
R=0, whereas E+−E− does, only the term with n�=− need
be considered as it dominates the sum. Since �H=−J, we
need the �� matrix element of J,

J+− 
 �+ �J� − � . �B1�
The matrix for the vector operator J is
J = Jxx̂ + Jyŷ + Jzẑ =�
ẑ

1
�2

�x̂ − iŷ� 0

1
�2

�x̂ + iŷ� 0
1
�2

�x̂ − iŷ�

0
1
�2

�x̂ + iŷ� − ẑ
� . �B2�

Therefore, feeding in Eq. �56�, we have

J+− = �s −
X
�2

�c − s� − c
�
ẑ

1
�2

�x̂ − iŷ� 0

1
�2

�x̂ + iŷ� 0
1
�2

�x̂ − iŷ�

0
1
�2

�x̂ + iŷ� − ẑ
�� c

X
�2

�c + s�

s
� = 2csẑ + X�s2 − c2�x̂ − iX�s2 + c2�ŷ .

�B3�
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Since s2+c2=1, c2−s2=cos �=Z /D, and 2cs=sin �=X2 /2D,
Eq. �B3� simplifies to

J+− = −
XZ

D
x̂ − iXŷ +

X2

2D
ẑ �B4�

and

Im�J+− � J+−
* � = −

X2

D
�Xx̂ + 2Zẑ� . �B5�

Finally, since E+−E−=2D, we get

B+ =
X2

4D3 �Xx̂ + 2Zẑ� , �B6�

in agreement with Eq. �70�.
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