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Tunneling between ferromagnet and superconductor

AN« Zeeman splitting: +u

* Thin SC layer -> no spin scattering I :
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Tunneling between two ferromagnets
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Py, effective spin polarization

GTT = Gfbfr(l + bePfrb)

G e non magnetic tunneling conductance

@ angle of internal magnetic fields

GTl = Gfbfr(l - bePfrb)

* Different ferromagnets:

G= Gfbfr(l + bePfrb COS 9) '

—GTT — GH’ = PPy, =t Py
G+ Gy

2013.05.17. Nanophysics Seminar 3




Tersoff-Hamann theory of STM

2re
 First-order time-dependent perturbation: /= TZ {AEV - AE, +eU)]
MV

~AE,+eU[1-AE)M,,[’8E,-E,)

Unperturbed electronic states of tip: qfﬂ and sample: q’v

. . —h? . .
* Tunneling matrix element: Mw=ﬂfd5(‘1’#V‘1’v—‘I’vV‘1’#)

* Model tip wavefunction: s-type |
Low T, small U bias voltage Vu= RS . A /’/—\; \
\ 4 % )
I Un(Ep)exp(2kR) 2, |V (7)) |*&(E, - Ef) I 3
DOS of the tip WW

LDOS at the sample’s surface:  15(Er 7o) = 2 |V, (7o) 8(E, — Ep)

W (7o) = exp [~ 2k(s + R)] === [ exp (- 2xs)
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Spin resolved STM

* Magnetic tip -> spin dependent tunneling current

Spinor transformation between the spin coordinate
system of tip and sample:

G= 211'2G0(H{TH_I|MTT|2 + nln‘SL|M¢-l|2 + n'}nﬂMl-rP

+n§ni|MH|2).

n,=n!+n', n,=nl+n
mr:n;—n}, m_szn.
G =27 Go|Mo[*(nng + man, cos 6)

P,=m/n,, P,=mJn;,

G =27 Gy|My*nn (1 + P,P, cos 6)

* Spin resolved LDOS at E for both sample and tip
* Cos @ angle between the magnetization
direction of tip and sample
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Spin resolved STM

. . . . 1
First experiment with magnetic tip and sample H
&5
e CrO, tip with Cr (001) sample surface: alternately S }h, H 1y
magnetized terraces separated by monatomic steps. ’ ﬁ’[ jf:fz t tw
23 ~ 1A%
h
* Atconstant height, the current would change: {-mls“
I —1
= =I,(1-P) P=—-—=X
I1=Iy(1+P) I = ol ) I +1,,

* At constant current mode, the height changes:

hy=h+As+As, hy=h—As|—As,
Low bias: Finite bias: Spin and Energy dependent LDOS of tip and sample
exp(A dAs) — 1 38 1 g
B exp(A pAs) + 1 * Model calculation: g i
*  Pis strongly bias N e W S A
=}
1 21 dependent, can 5
A = 1.025 eV_ - A_ Change s|gn! Eg Sample: CrSOQI) Tip: CrO, .
ASZAS.I +A52 * Distance dependent  ¢-35 - 5 M ]
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qb barrier height different decay rates . L L - . ryvu B R e ! oy
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Tip fabrication

2013.05.17.

High spatial resolution
High spin polarization
Nondestructive magnetic imaging process

Control of the spin orientation: measuring in plane/out of plane component

Tips from bulk magnetic material:

Non magnetic tip with ultrathin film of magnetic material:

\

tungsten
W tip

Non magnetic tip with a cluster of magnetic material:
iron cluster
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Tips from bulk magnetic material

e Large magnetic stray fields

Suitable for FM or AFM samples, not sensitive to
external magnetic fields.

* Compensate stray fields with the use of
antiferromagnetic materials

*  Blunt AFM tip -> spin polarized tunneling current
of the different sublattices cancel out

FM AFM

2013.05.17.

Nanophysics Seminar

Energetically lowest magnetic configuration:

o N\

High spin contrast is needed -> high spin polarization

Optimal materials: half metallic magnets (CrO,,
Fe,0,) - metallic behavior for one spin direction,
insulator for the other spin direction -> near 100%
spin polarization.




Non magnetic tip with ultrathin magnetic coating

e Reducing the stray field: magnetic thin film tips

Electrochemical etching
UHYV, in situ cleaning: electron beam, high T
(2200K) flash up -> blunt tip =1

Magnetization direction: material specific surface,
interface anisotropies, depending on the layer
thickness both in plane and out of plane
magnetization can be achieved:

Witip+10 MLAu+<8 MLCo ->out of plane

+>8 MLCo ->inplane

External field can be used to force the
magnetization from the easy to the hard direction

Spin sensitivity direction can be tuned by the bias
voltage.

[Intra-atomic non collinear magnetism at thin film probe tips, Bode et al., 2001]
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Non magnetic tip with cluster of magnetic material

 Easiest method

Voltage pulses between nonmagnetic STM tip and magnetic sample

 Nonmagnetic STM tip dipped into a magnetic sample:

iron cluster

e Cannot control the direction of magnetization!
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SP-STM modes of operation

* Constant-current mode H T

* Spin-resolved spectroscopic mode

* Modulated tip magnetization
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Constant-current mode

* Investigation of spin structures on the atomic scale a5
5 }hn t Iy
. . ﬁ[ asp (1] tn
* Also can be applied for atomically flat surfaces of I j"z _
single crystals, nanowires, nanoscale islands "{_ F £

* Not applicable to rough surfaces -> topographic and
magnetic structures interfering

* Spin polarized current is sensitive only to the energy
integrated spin polarized LDOS, if a large bias voltage
is used and the spin polarization changes sign -> spin
polarized current is reduced.
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Spin-resolved spectroscopic mode

* Measurement of the local differential
conductance dI/dU(U,x.y) as a
function of bias voltage at each point
of the sample.

* Should be performed at constant tip
surface separation - z position

stabilized at a bias: [ (U;)=0 domain wall

e Samples with inhomogeneous
electronic structure — separation of
electronic and magnetic structure
information: dl/dU,, - dI/dU,,
A= '

Two simultaneously recorded dI/dU images with zero (electronic contrast
image) and maximum (magnetic contrast image) spin asymmetry.
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Modulated tip magnetization

e Periodical switching of tip magnetization with a
frequency higher than the cutoff frequency of
the feedback loop:

dl .
e (Fo) = ri1g(U)
n,
» Effectively separate electronic from magnetic
contrast effects.

* The spin polarized current may vanish at a
given U bias voltage even if local magnetization
of the sample exists -> investigation of bias
dependence needed!

* Ferromagnetic tip have to be used -> magnetic
stray field can affect the local magnetization of
the sample.
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Applications of SP-STM

* Magnetic domain and domain-wall structure of single crystals

* Magnetic domain and domain-wall structure of nanostripes and nanowires

* Magnetic states of nanoislands and nanoparticles

e Atomic-resolution spin mapping
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Magnetic domain structure of ferromagnetic metal film
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FIG. 17. (Color) Application of SP-STS for magnetic domain imaging with subnanoscale spatial resolution: a thin Dy(0001) film
(90 ML) grown epitaxially on a W(110) substrate (a) exhibits a domain structure (b) with six different in-plane orientations of the
local magnetization. (c) The six different contrast values in the SP-STM image result from the six different projections of the local
sample magnetization onto the local magnetization direction (quantization axis) of the Dy probe tip. From Krause er al., 2006.
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Magnetic domain structure of ferromagnetic metal film

Magnetic domain wall widths:

20 25
lateral position [nm)]

High magnetic anisotropy -> narrow domain walls = 2-5 nm
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Magnetic domain structure of nanostripes
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FIG. 25. Application of SP-STM to magnetic nanostripes. (a)

Rendered  perspective  topographic  STM  image (200

. . . X200 nm?) of narrow Fe nanostripes (~6-7 nm wide) pre-

* DL St”pes are antlfe rromagnetlca”y Coupled pared on a stepped W(110) substrate, grayscale coded with the
spin-tesolved spectroscopic dI/dU signal as measured with an

out-of-plane-sensitive Gd-coated tip. A dipolar antiferromag-

e DL Stripes CIOSE to each Other -> ferromagnetic netic coupling between the Fe double-layer nanostripes leads

. . . to an alternating spin contrast. However, if two double-layer
COUleng due to the excha nge Interaction stripes are too close to each other, the exchange interaction
leads to a ferromagnetic coupling. In some cases, narrow do-
main walls can be observed along the double-layer nano-
stripes. (b) Schematic of the perpendicularly magnetized
double-layer Fe stripes exhibiting an antiparallel dipolar cou-
pling in order to reduce the magnetic stray field of the array.
Within the domain walls, the Fe double-layer nanostripes lo-
cally exhibit an in-plane magnetization. From Pietzsch et al.,
2000a; Bode, Kubetzka, er al., 2001.
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Magnetic domain structure of nanostripes

External magnetic field:
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FIG. 27. (Color) Series of spin-
resolved spectroscopic dI/dU
maps (200X 200 nm?) of an ar-
ray of multidomain Fe double-
layer nanostripes obtained in an
increasing perpendicular mag-
netic field. Pairs of 180° walls
are gradually forced together,
which is equivalent to the for-
mation and compression of
360° walls. At a field of 800 mT,
most of them have vanished.
i.e., the Fe thin film is in mag-
netic saturation. From Ku-
betzka, Pietzsch, Bode, and
Wiesendanger, 2003b.




Spin dependent quantum confinement states in nanoislands

+ 290 mV

FIG. 43. (Color) Spin-averaged STS image (60X 60 nm?)
showing 2D electronic confinement states in double-layer Co
nanoislands on Cu(111) as well as scattering states of the
Cu(111) surface state electrons at single Co adatoms and
Co/Cu interfaces.

Confinement -> energy-dependent oscillation of

the LDOS on the islands surfaces S 1ol 116
2 .
< 0.8F 11.4
FIG. 44. (Color) SP-STS data (60X 60 nm?) revealing the spin =
. . 2 0.6 11.2
dependence of the 2D electronic confinement states in nano- »
scale Co islands which manifests itself by a spin-dependent % 0.4f 11.0
oscillation amplitude of the confinement states for differently = i = — |
magnetized Co nanoislands. From Pietzsch er al., 2006. B M M U- 0'2-91 V L 2 L .
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Atomic-resolution spin mapping

Fe monolayer on W(001)

FIG. 46. (Color) Atomic-resolution spin mapping on an anti-
ferromagnetic Fe monolayer. (a) SP-STM image showing the
magnetic (2X2) superstructure of (b) an antiferromagnetic

° (2X2) antiferromagnetic superlattice monola'yer of Fe on a W(QOI) substrate. Since an out-of-plane
magnetized Fe-coated W tip has been used, one concludes that
the Fe monolayer on W(001) exhibits an out-of-plane magnetic
anisotropy, which was subsequently confirmed by DFT calcu-
lations. The inset in (a) shows an atomically resolved (1 X 1)
lattice as revealed either by a nonmagnetic or by an in-plane-
sensitive probe tip. From Kubetzka er al., 2005.
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