Chern Number and Topological Insulators
 - an Introduction

Janos Asboth

Budapest,Wigner Centre for Physics, Dept. of Quantum Optics and Quantum Information

Insulators

Covalent Insulator
e.g. intrinsic semiconductor

Atomic Insulator
e.g. solid Ar

The vacuum

Edge states in Dirac equation

- 2D 2-spinor Dirac equation

$$
H_{D} \Psi=\left[\sigma_{x} p_{x}+\sigma_{y} p_{y}+m \sigma_{z}\right] \Psi(x, y)=\varepsilon \Psi(x, y)
$$

- Create edge by modifying parameters
- Confine electrons to edge via $m(x, y)$
- Keep translation invariance along x

$$
\begin{aligned}
p_{x} & \rightarrow q ; \quad p_{y} \rightarrow-i \partial_{y} \quad \Psi_{q}(x, y)=e^{i q x} \Psi(y) \\
& -i \partial_{y} \Psi(y)
\end{aligned}=\underbrace{\left[i q \sigma_{z}-i \sigma_{x} m(y)+\varepsilon \sigma_{y}\right]} \Psi(y) \quad .
$$

- General solution: $\mathcal{A}(y) \quad \Psi(y)=\mathbb{Y} e^{i \int_{0}^{y} \mathcal{A} y^{\prime} d y^{\prime}} \Psi(0)$
- Ansatz:

$$
\varepsilon=q \mathcal{A}(y)=i q \underbrace{\left(\sigma_{z}-i \sigma_{y}\right)}_{\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)}-i m(y) \sigma_{x} .
$$

- Unidirectional propagation (only $+x$)

$$
\Psi(y)=\underbrace{e^{\int_{0}^{y} m\left(y^{\prime}\right) d y^{\prime}}}\binom{1}{1}
$$

Normalizing prefactor, if

$$
M_{1}>0 ; \quad M_{2}<0
$$

- Robust: no scattering to bulk (gap) no backscattering (unidirectional)
- Has to go across sample (unitarity)
- If $M_{1}<0 ; M_{2}>0$: unidirectional (-x)

Lattice systems: several Dirac equations

- 1 electron/atom, 2 atoms/cell:
- pseudospin (sublattice)
- Gap closes at corners of Brillouin Zone (6/3=2 Dirac points)
- Low energy: 2 copies of massless Dirac equation >2 valleys, T_{z} independent if no short-range scatterers

$$
H=\tau_{z} p_{x} \sigma_{x}+p_{y} \sigma_{y}
$$

- Induce mass (gap) via
- substitution, Boron Nitride
- electric field in bilayer graphene
- Counterpropagating edge states from opposite valleys

$$
H=\tau_{z} p_{x} \sigma_{x}+p_{y} \sigma_{y}+m \sigma_{z}
$$

Summing over valleys: Chern number

Momentum eigenstates have definite spin, 2D Brillouin zone

- Chern number: \# of skyrmions in the Brillouin zone

$\mathbf{n}(\mathbf{k})$ maps from Brillouin zone (torus) to unit sphere:
- Chern number: \# of times the sphere is covered by mapping

$$
c_{n}=\frac{1}{4 \pi} \int d^{2} \vec{k}\left(\partial_{k_{x}} \vec{n} \times \partial_{k_{y}} \vec{n}\right) \cdot \vec{n}
$$

Consider \mathbf{k} an adiabatically changed parameter:

$$
A_{\mu}(k)=-i\langle n(k)| \frac{\partial}{\partial k_{\mu}}|n(k)\rangle
$$

- Chern \#: Integral of Berry phase around the Brillouin zone
= integral of Berry flux in the Brillouin zone

$$
F_{x y}(k)=\frac{\partial A_{y}}{\partial k_{x}}-\frac{\partial A_{x}}{\partial k_{y}}
$$

$C_{1}=\frac{1}{2 \pi} \int d k_{x} d k_{y} F_{x y}(k)$
efficient discretization: need only 10 or so k-points [Fukui, Hatsugai, Suzuki, JPSJ (2005)]

Chern \#: needs Time Reversal Symmetry Breaking

- Chern number always 0 if we have a global basis
- Time reversal symmetry:
- Complex conjugation in position and preferred internal basis: $K \Psi(k)=\Psi^{*}(-k)$ - k -independent internal unitary rotation:

$$
\exists T \in U(N): \forall k \in B Z: T K H(k) K T^{\dagger}=H(k)
$$

- Antiunitary symmetry, $\quad \Theta=T K$
- With time reversal invariance, we always have a global basis: Chern \# = 0
- Break time reversal invariance via magnetic field
- Graphene, Haldane [PRL, 1988]: staggered magnetic field, simple calculation
- 0 average field \Rightarrow no need for magnetic Brillouin Zone
- Peierls substitution only for NNN hoppings
- Competition between conventional and topological gap

