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Edge states in Dirac equation
• 2D 2-spinor Dirac equation

• Create edge by modifying parameters

• Confine electrons to edge via m(x,y)

• Keep translation invariance along x

• General solution:

Edge states in the Dirac equation
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(Dated: Spring 2011)

abstract.

I. DIRAC EQUATION

Take a particle in a plane, with energy eigenstates de-

scribed by the time-independent Dirac equation (a par-

tial differential equation):

HDΨ = [σxpx + σypy +mσz]Ψ(x, y) = εΨ(x, y). (1)

Here Ψ is a 2-component wavefunction, corresponding to

a pseudospin degree of freedom: for electrons in vacuum,

this is the particle/antiparticle space, for graphene, the

A/B sublattice. The σx,y,z denote the Pauli matrices,

which act on the pseudospin. This is a differential equa-
tion, px = −i∂x and py = −i∂y.

The real parameter m is related to the mass of the

particle. To see that, consider an energy eigenstate, and

then

HDHD = p
2
x + p

2
y +m

2
= ε2 (2)

which means we have a hyperbolic dispersion relation.

For small px, py, we recover the nonrelativistic dispersion

relation:

ε = m+
p
2
x

2m
+

p
2
y

2m
. (3)

II. POSITION-DEPENDENT MASS

Now we allow the parameter m to depend on y, but

not on x. We then have translation invariance along x.

Therefore, the wavenumber along y is a good quantum

number:

px → q; py → −i∂y; (4)

Ψq(x, y) = e
iqxΨ(y) (5)

Rearranging Eq. (1), we obtain a 1D differential equation:

−i∂yΨ(y). = [iqσz − iσxm(y) + εσy]Ψ(y) (6)

This can be solved by a transfer matrix method:

A(y) = [iqσz − iσxm(y) + εσy] ; (7)

A(y) =

�
ε2 −m(y)2 − q2Â; (8)

Â2
= 1; (9)

Ψ(y + dy) = e
idyAΨ(y); (10)

Ψ(y1) = Yei
� y1
y0 dyAyΨ(y0). (11)

Here Y is the path-ordering operator.

If m(y) is a constant for y0 < y < y1, then so is A(y),

and we simply have

Ψ(y0 + y) = e
yAΨ(y0) = e

i
√

ε2−m2−q2yÂΨ(y0). (12)

Considering that Â2
= 1, the eigenvalues of Â are ±1.

For large energies,

�
ε2 −m2 − q2 ∈ R, and we have os-

cillatory solutions. These are the plane wave modes. In-

side the gap, however,

�
ε2 −m2 − q2 ∈ iR, and we have

evanescent solutions. The eigenvectors of Â are the same

as those of A:

A =

�
iq −i(m+ ε)

−i(m− ε) −iq

�
=

1

i

�
−q m+ ε

m− ε q

�

(13)

The eigenvectors are:

�
m+ ε√

+q

�
;

�
m+ ε
−
√
+q

�
(14)

Inside the gap, i.e., for ε2 < q
2
+m

2

To solve the Dirac equation, we consider a simple y-

dependence:

m < −l/2 : m(y) = m1; (15)

−l/2 < m < l/2 : m(y) = 0; (16)

l/2 < m : m(y) = m2. (17)

For states inside the gap, i.e., with energy |ε| <

min(|m1| , |m2|), this corresponds to a confinement of the

particle to the “channel” y ≈ 0.

A. Boundary conditions

For states inside the gap, normalizability requires that

Ψ(y) decay exponentially for y > l/2 and increase expo-

nentially for y < −l/2.

B. Fast track to the edge state

Try

ε = q. (18)

We then have

A(y) = iq(σz − iσy)− im(y)σx. (19)

y

x
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Â2
= 1; (9)

Ψ(y + dy) = e
idyAΨ(y); (10)

Ψ(y1) = Yei
� y1
y0 dyAyΨ(y0). (11)

Here Y is the path-ordering operator.

If m(y) is a constant for y0 < y < y1, then so is A(y),

and we simply have

Ψ(y0 + y) = e
yAΨ(y0) = e

i
√
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The matrix in the brackets has interesting properties. It
has only one eigenvector:

�
1 −1
1 −1

��
1 1
−1 1

�
= 2

�
1 0
1 0

�
. (20)

Therefore, we can write down a solution to the Dirac
equation directly, using Eq. (11):

Ψ(y) = e
� y
0 m(y�)dy�

�
1
1

�
. (21)

This solution is normalizable, if there is an M > 0 such
that

m(y = −∞) > +M ; and m(y = +∞) < −M. (22)

m(x, y) = M1 m(x, y) = M2 (23)

If we instead have

m(y = −∞) < −M ; and m(y = +∞) > M, (24)

we can apply the above reasoning, and find

ε = −q; (25)

Ψ(y) = e−
� y

0
m(y�)dy�

�
1
−1

�
. (26)
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min(|m1| , |m2|), this corresponds to a confinement of the

particle to the “channel” y ≈ 0.

A. Boundary conditions

For states inside the gap, normalizability requires that

Ψ(y) decay exponentially for y > l/2 and increase expo-

nentially for y < −l/2.

B. Fast track to the edge state

Try

ε = q. (18)

We then have

A(y) = iq(σz − iσy)− im(y)σx. (19)

• Ansatz:

Edge states in the Dirac equation

notes

(Dated: Spring 2011)

abstract.

I. DIRAC EQUATION

Take a particle in a plane, with energy eigenstates de-

scribed by the time-independent Dirac equation (a par-

tial differential equation):

HDΨ = [σxpx + σypy +mσz]Ψ(x, y) = εΨ(x, y). (1)

Here Ψ is a 2-component wavefunction, corresponding to

a pseudospin degree of freedom: for electrons in vacuum,

this is the particle/antiparticle space, for graphene, the

A/B sublattice. The σx,y,z denote the Pauli matrices,

which act on the pseudospin. This is a differential equa-
tion, px = −i∂x and py = −i∂y.

The real parameter m is related to the mass of the

particle. To see that, consider an energy eigenstate, and

then

HDHD = p
2
x + p

2
y +m

2
= ε2 (2)

which means we have a hyperbolic dispersion relation.

For small px, py, we recover the nonrelativistic dispersion

relation:

ε = m+
p
2
x

2m
+

p
2
y

2m
. (3)

II. POSITION-DEPENDENT MASS

Now we allow the parameter m to depend on y, but

not on x. We then have translation invariance along x.

Therefore, the wavenumber along y is a good quantum

number:

px → q; py → −i∂y; (4)

Ψq(x, y) = e
iqxΨ(y) (5)

Rearranging Eq. (1), we obtain a 1D differential equation:

−i∂yΨ(y) = [iqσz − iσxm(y) + εσy]Ψ(y) (6)

This can be solved by a transfer matrix method:

A(y) = [iqσz − iσxm(y) + εσy] ; (7)

A(y) =

�
ε2 −m(y)2 − q2Â; (8)

Â2
= 1; (9)

Ψ(y + dy) = e
idyAΨ(y); (10)

Ψ(y) = Yei
� y
0 Ay�dy�

Ψ(0). (11)

Here Y is the path-ordering operator.

If m(y) is a constant for y0 < y < y1, then so is A(y),

and we simply have

Ψ(y0 + y) = e
yAΨ(y0) = e

i
√

ε2−m2−q2yÂΨ(y0). (12)

Considering that Â2
= 1, the eigenvalues of Â are ±1.

For large energies,

�
ε2 −m2 − q2 ∈ R, and we have os-

cillatory solutions. These are the plane wave modes. In-

side the gap, however,

�
ε2 −m2 − q2 ∈ iR, and we have

evanescent solutions. The eigenvectors of Â are the same

as those of A:

A =

�
iq −i(m+ ε)

−i(m− ε) −iq

�
=

1

i

�
−q m+ ε

m− ε q

�

(13)

The eigenvectors are:

�
m+ ε√

+q

�
;

�
m+ ε
−
√
+q

�
(14)

Inside the gap, i.e., for ε2 < q
2
+m

2

To solve the Dirac equation, we consider a simple y-

dependence:

m < −l/2 : m(y) = m1; (15)

−l/2 < m < l/2 : m(y) = 0; (16)

l/2 < m : m(y) = m2. (17)

For states inside the gap, i.e., with energy |ε| <

min(|m1| , |m2|), this corresponds to a confinement of the

particle to the “channel” y ≈ 0.

A. Boundary conditions

For states inside the gap, normalizability requires that

Ψ(y) decay exponentially for y > l/2 and increase expo-

nentially for y < −l/2.

B. Fast track to the edge state

Try

ε = q. (18)

We then have

A(y) = iq(σz − iσy)− im(y)σx. (19)

2

The matrix in the brackets has interesting properties. It
has only one eigenvector:

�
1 −1
1 −1

��
1 1
−1 1

�
= 2

�
1 0
1 0

�
. (20)

Therefore, we can write down a solution to the Dirac
equation directly, using Eq. (11):

Ψ(y) = e
� y
0 m(y�)dy�

�
1
1

�
. (21)

This solution is normalizable, if there is an M > 0 such
that

m(y = −∞) > +M ; and m(y = +∞) < −M. (22)

m(x, y) = M1 m(x, y) = M2 (23)

If we instead have

m(y = −∞) < −M ; and m(y = +∞) > M, (24)

we can apply the above reasoning, and find

ε = −q; (25)

Ψ(y) = e−
� y

0
m(y�)dy�

�
1
−1

�
. (26)

Normalizing prefactor, if
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The matrix in the brackets has interesting properties. It
has only one eigenvector:

�
1 −1
1 −1

��
1 1
−1 1

�
= 2

�
1 0
1 0

�
. (20)

Therefore, we can write down a solution to the Dirac
equation directly, using Eq. (11):

Ψ(y) = e
� y
0 m(y�)dy�

�
1
1

�
. (21)

This solution is normalizable, if there is an M > 0 such
that

m(y = −∞) > +M ; and m(y = +∞) < −M. (22)

m(x, y) = M1 m(x, y) = M2 (23)

M1 > 0; M2 < 0 (24)

If we instead have

m(y = −∞) < −M ; and m(y = +∞) > M, (25)

we can apply the above reasoning, and find

ε = −q; (26)

Ψ(y) = e−
� y

0
m(y�)dy�

�
1
−1

�
. (27)

• If                           : unidirectional (-x)

2

The matrix in the brackets has interesting properties. It
has only one eigenvector:

�
1 −1
1 −1

��
1 1
−1 1

�
= 2

�
1 0
1 0

�
. (20)

Therefore, we can write down a solution to the Dirac
equation directly, using Eq. (11):

Ψ(y) = e
� y
0 m(y�)dy�

�
1
1

�
. (21)

This solution is normalizable, if there is an M > 0 such
that

m(y = −∞) > +M ; and m(y = +∞) < −M. (22)

m(x, y) = M1 m(x, y) = M2 (23)

M1 > 0; M2 < 0 (24)

If we instead have

m(y = −∞) < −M ; and m(y = +∞) > M, (25)

m(x, y) = M1 m(x, y) = M2 (26)

M1 < 0; M2 > 0 (27)

we can apply the above reasoning, and find

ε = −q; (28)

Ψ(y) = e−
� y

0
m(y�)dy�

�
1
−1

�
. (29)

Edge states in the Dirac equation

notes

(Dated: Spring 2011)

abstract.

I. DIRAC EQUATION

Take a particle in a plane, with energy eigenstates de-

scribed by the time-independent Dirac equation (a par-

tial differential equation):

HDΨ = [σxpx + σypy +mσz]Ψ(x, y) = εΨ(x, y). (1)

Here Ψ is a 2-component wavefunction, corresponding to

a pseudospin degree of freedom: for electrons in vacuum,

this is the particle/antiparticle space, for graphene, the

A/B sublattice. The σx,y,z denote the Pauli matrices,

which act on the pseudospin. This is a differential equa-
tion, px = −i∂x and py = −i∂y.

The real parameter m is related to the mass of the

particle. To see that, consider an energy eigenstate, and

then

HDHD = p
2
x + p

2
y +m

2
= ε2 (2)

which means we have a hyperbolic dispersion relation.

For small px, py, we recover the nonrelativistic dispersion

relation:

ε = m+
p
2
x

2m
+

p
2
y

2m
. (3)

II. POSITION-DEPENDENT MASS

Now we allow the parameter m to depend on y, but

not on x. We then have translation invariance along x.

Therefore, the wavenumber along y is a good quantum

number:

px → q; py → −i∂y; (4)

Ψq(x, y) = e
iqxΨ(y) (5)

Rearranging Eq. (1), we obtain a 1D differential equation:

−i∂yΨ(y) = [iqσz − iσxm(y) + εσy]� �� �
Ψ(y) (6)

This can be solved by a transfer matrix method:

A(y) = [iqσz − iσxm(y) + εσy] ; (7)

A(y) =

�
ε2 −m(y)2 − q2Â; (8)

Â2
= 1; (9)

Ψ(y + dy) = e
idyAΨ(y); (10)

Ψ(y) = Yei
� y
0 Ay�dy�

Ψ(0). (11)

Here Y is the path-ordering operator.

If m(y) is a constant for y0 < y < y1, then so is A(y),

and we simply have

Ψ(y0 + y) = e
yAΨ(y0) = e

i
√

ε2−m2−q2yÂΨ(y0). (12)

Considering that Â2
= 1, the eigenvalues of Â are ±1.

For large energies,

�
ε2 −m2 − q2 ∈ R, and we have os-

cillatory solutions. These are the plane wave modes. In-

side the gap, however,

�
ε2 −m2 − q2 ∈ iR, and we have

evanescent solutions. The eigenvectors of Â are the same

as those of A:

A =

�
iq −i(m+ ε)

−i(m− ε) −iq

�
=

1

i

�
−q m+ ε

m− ε q

�

(13)

The eigenvectors are:

�
m+ ε√

+q

�
;

�
m+ ε
−
√
+q

�
(14)

Inside the gap, i.e., for ε2 < q
2
+m

2

To solve the Dirac equation, we consider a simple y-

dependence:

m < −l/2 : m(y) = m1; (15)

−l/2 < m < l/2 : m(y) = 0; (16)

l/2 < m : m(y) = m2. (17)

For states inside the gap, i.e., with energy |ε| <

min(|m1| , |m2|), this corresponds to a confinement of the

particle to the “channel” y ≈ 0.

A. Boundary conditions

For states inside the gap, normalizability requires that

Ψ(y) decay exponentially for y > l/2 and increase expo-

nentially for y < −l/2.

B. Fast track to the edge state

Try

ε = q. (18)

We then have

A(y) = iq(σz − iσy)− im(y)σx. (19)

Edge states in the Dirac equation
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abstract.

I. DIRAC EQUATION

Take a particle in a plane, with energy eigenstates de-

scribed by the time-independent Dirac equation (a par-

tial differential equation):

HDΨ = [σxpx + σypy +mσz]Ψ(x, y) = εΨ(x, y). (1)

Here Ψ is a 2-component wavefunction, corresponding to

a pseudospin degree of freedom: for electrons in vacuum,

this is the particle/antiparticle space, for graphene, the

A/B sublattice. The σx,y,z denote the Pauli matrices,

which act on the pseudospin. This is a differential equa-
tion, px = −i∂x and py = −i∂y.

The real parameter m is related to the mass of the

particle. To see that, consider an energy eigenstate, and

then

HDHD = p
2
x + p

2
y +m

2
= ε2 (2)

which means we have a hyperbolic dispersion relation.

For small px, py, we recover the nonrelativistic dispersion

relation:

ε = m+
p
2
x

2m
+

p
2
y

2m
. (3)

II. POSITION-DEPENDENT MASS

Now we allow the parameter m to depend on y, but

not on x. We then have translation invariance along x.

Therefore, the wavenumber along y is a good quantum

number:

px → q; py → −i∂y; (4)

Ψq(x, y) = e
iqxΨ(y) (5)

Rearranging Eq. (1), we obtain a 1D differential equation:

−i∂yΨ(y) = [iqσz − iσxm(y) + εσy]� �� �
Ψ(y) (6)

This can be solved by a transfer matrix method:

A(y) = [iqσz − iσxm(y) + εσy] ; (7)

A(y) =

�
ε2 −m(y)2 − q2Â; (8)

Â2
= 1; (9)

Ψ(y + dy) = e
idyAΨ(y); (10)

Ψ(y) = Yei
� y
0 Ay�dy�

Ψ(0). (11)

Here Y is the path-ordering operator.

If m(y) is a constant for y0 < y < y1, then so is A(y),

and we simply have

Ψ(y0 + y) = e
yAΨ(y0) = e

i
√

ε2−m2−q2yÂΨ(y0). (12)

Considering that Â2
= 1, the eigenvalues of Â are ±1.

For large energies,

�
ε2 −m2 − q2 ∈ R, and we have os-

cillatory solutions. These are the plane wave modes. In-

side the gap, however,

�
ε2 −m2 − q2 ∈ iR, and we have

evanescent solutions. The eigenvectors of Â are the same

as those of A:

A =

�
iq −i(m+ ε)

−i(m− ε) −iq

�
=

1

i

�
−q m+ ε

m− ε q

�

(13)

The eigenvectors are:

�
m+ ε√

+q

�
;

�
m+ ε
−
√
+q

�
(14)

Inside the gap, i.e., for ε2 < q
2
+m

2

To solve the Dirac equation, we consider a simple y-

dependence:

m < −l/2 : m(y) = m1; (15)

−l/2 < m < l/2 : m(y) = 0; (16)

l/2 < m : m(y) = m2. (17)

For states inside the gap, i.e., with energy |ε| <

min(|m1| , |m2|), this corresponds to a confinement of the

particle to the “channel” y ≈ 0.

A. Boundary conditions

For states inside the gap, normalizability requires that

Ψ(y) decay exponentially for y > l/2 and increase expo-

nentially for y < −l/2.

B. Fast track to the edge state

Try

ε = q. (18)

We then have

A(y) = iq (σz − iσy)� �� �
−im(y)σx. (19)

2

The matrix in the brackets has interesting properties. It
has only one eigenvector:

�
1 −1
1 −1

��
1 1
−1 1

�
= 2

�
1 0
1 0

�
. (20)

Therefore, we can write down a solution to the Dirac
equation directly, using Eq. (11):

Ψ(y) = e
� y
0 m(y�)dy�

� �� �

�
1
1

�
. (21)

This solution is normalizable, if there is an M > 0 such
that

m(y = −∞) > +M ; and m(y = +∞) < −M. (22)

m(x, y) = M1 m(x, y) = M2 (23)

M1 > 0; M2 < 0 (24)

If we instead have

m(y = −∞) < −M ; and m(y = +∞) > M, (25)

m(x, y) = M1 m(x, y) = M2 (26)

M1 < 0; M2 > 0 (27)

we can apply the above reasoning, and find

ε = −q; (28)

Ψ(y) = e−
� y

0
m(y�)dy�

�
1
−1

�
. (29)

- Unidirectional propagation (only +x)

- Robust: no scattering to bulk (gap)
  no backscattering (unidirectional)

- Has to go across sample (unitarity)
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Lattice systems: several Dirac equations

30 Electronic Band Structure of Graphene
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Figure 2.2: Energy dispersion obtained within the tight-binding approximation, for
tnnn/t = 0.1. One distinguishes the valence (π) band from the conduction (π∗) band. The
Fermi level is situated at the points where the π band touches the π∗ band. (a) Energy
dispersion as a function of the wave-vector components kx and ky. (b) Cut throught the
energy dispersion along characteristic lines (connecting the points K → Γ → M → K.
The energy is measured in units of t and the wave vectors in units of 1/a.

Energy dispersion of π electrons in graphene

The energy dispersion (2.22) is plotted in Fig. 2.2 for tnnn/t = 0.1. It
consists of two bands, labeled by the index λ = ±, each of which contains
the same number of states. Because each carbon atom contributes one π
electron and each electron may occupy either a spin-up or a spin-down state,
the lower band with λ = − (the π or valence band) is completely filled and
that with λ = + (the π∗ or conduction band) completely empty. The Fermi
level is, therefore, situated at the points where the π band touches the π∗

band. Notice that, if tnnn = 0, the energy dispersion (2.22) is electron-hole
symmetric, i.e. ελ

k = −ε−λ
k . This means that nnn hopping and nn overlap

corrections break the electron-hole symmetry. The points, where the π band
touches the π∗ band, are called Dirac points, for reasons that are explained
in the following chapter. They situated at the points kD where the energy
dispersion (2.22) is zero,

ελ
kD = 0. (2.24)
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Figure 1.7: (a) Honeycomb lattice. The vectors δ1, δ2, and δ3 connect nn carbon atoms,
separated by a distance a = 0.142 nm. The vectors a1 and a2 are basis vectors of the tri-
angular Bravais lattice. (b) Reciprocal lattice of the triangular lattice. Its primitive lattice
vectors are a∗

1 and a∗

2. The shaded region represents the first Brillouin zone (BZ), with
its centre Γ and the two inequivalent corners K (black squares) and K ′ (white squares).
The thick part of the border of the first BZ represents those points which are counted in
the definition such that no points are doubly counted. The first BZ, defined in a strict
manner, is, thus, the shaded region plus the thick part of the border. For completeness,
we have also shown the three inequivalent cristallographic points M , M ′, and M ′′ (white
triangles).

covalent σ bonds, as in the case of benzene.
The three vectors which connect a site on the A sublattice with a nn on

the B sublattice are given by

δ1 =
a

2

(√
3ex + ey

)

, δ2 =
a

2

(

−
√

3ex + ey

)

, δ3 = −aey, (1.2)

and the triangular Bravais lattice is spanned by the basis vectors

a1 =
√

3aex and a2 =

√
3a

2

(

ex +
√

3ey

)

. (1.3)

The modulus of the basis vectors yields the lattice spacing, ã =
√

3a = 0.24
nm, and the area of the unit cell is Auc =

√
3ã2/2 = 0.051 nm2. The density

of carbon atoms is, therefore, nC = 2/Auc = 39 nm−2 = 3.9 × 1015 cm−2.
Because there is one π electron per carbon atom that is not involved in a
covalent σ bond, there are as many valence electrons than carbon atoms, and
their density is, thus, nπ = nC = 3.9 × 1015 cm−2. As is discussed in the
following chapter, this density is not equal to the carrier density in graphene,
which one measures in electrical transport measurements.

• 1 electron/atom, 2 atoms/cell:

• pseudospin (sublattice)

• Gap closes at corners of Brillouin 
Zone (6/3=2 Dirac points)

• Low energy: 2 copies of massless 
Dirac equation -> 2 valleys, τz 

independent if no short-range 
scatterers

• Induce mass (gap) via
- substitution, Boron Nitride
- electric field in bilayer graphene

• Counterpropagating edge states 
from opposite valleys
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Summing over valleys: Chern number
Momentum eigenstates have definite spin, 2D Brillouin zone
- Chern number: # of skyrmions in the Brillouin zone

n(k) maps from Brillouin zone 
(torus) to unit sphere:
- Chern number: # of times the 
sphere is covered by mapping

Consider k an adiabatically changed parameter:
- Chern #: Integral of Berry phase around the Brillouin zone 
   = integral of Berry flux in the Brillouin zone  

Berry phase:

cn =
1

4π

�
d2�k

�
∂kx�n× ∂ky�n

�
· �n (1)

1 Discrete time quantum walk

|Ψ� =
N�

x=1

(Ψx,↑|x� ⊗ |↑�+Ψx,↓|x� ⊗ |↓�) . (2)

The dynamics is given by the unitary timestep operator, consisting of a
rotation of the spin followed by a spin-dependent translation,

|Ψ(t+ 1)� = U |Ψ(t)�; (3)

U = TR. (4)

x ∈ Z (5)

t ∈ N (6)

The operator T translates the walker to the left(right) if its spin is pointing
left(right):

T =
�

x

�
|x− 1��x|⊗ |↓��↓|+ |x+ 1��x|⊗ |↑��↑|

�
(7)

The coin operator R is the unitary rotation, or “coin flip” operator, diagonal
in x,

R =

�
cos θ − sin θ
sin θ cos θ

�
= e−iθσy (8)

R
�π
4

�
=

1√
2

�
1 −1
1 1

�
(9)

with a possibly x-dependent unitary operator R(x) acting only on the internal
degree of freedom. Rudner et al. take R(x) as a homogeneous rotation of the
spin around the y axis by an angle θ, which is an important parameter:

R(x) ≡ R(θ) = exp(−iθσy/2). (10)

We picked σy in the definition above, but since it is only the

|k� =
�

x

e−ikx|x� (11)

−π < k < π (12)

1

efficient discretization: need only 10 or so k-points 
[Fukui, Hatsugai, Suzuki, JPSJ (2005)]
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Chern #: needs Time Reversal Symmetry Breaking

• Chern number always 0 if we have a global basis

• Time reversal symmetry: 
- Complex conjugation in position and preferred internal basis:
- k-independent internal unitary rotation:

- Antiunitary symmetry, 

• With time reversal invariance, we always have a global basis: Chern # = 0

• Break time reversal invariance via magnetic field

• Graphene, Haldane [PRL, 1988]: staggered magnetic field, simple 
calculation
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Komplex conjugation in position and a preferred local basis:

KΨ(k) = Ψ∗(−k) (7)

Time reversal symmetry: there is a k-independent internal unitary
“rotation” T , that

∃T ∈ U(N) : ∀k ∈ BZ : TKH(k)KT † = H(k) (8)

C1 =
1

2π

�
dkxdkyFxy (k) (9)
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while for Bp&0, relativistic Landau levels are obtained
as follows:

e,„~= ~ [(rn,c ) +nb ~ eBp ~
c ] ' (n ~ I ),

e p =am, c sgn(eBp) .

(4a)

(4b)

Every n ~ 1 level that evolves out of the upper band as
Bp is turned on is balanced by a level that evolves from
the lower band. However, the n =0 "zero-mode" energy
is not symmetric under Bp —Bp. It evolves from the
upper band if am, eBp is positive, and from the lower
band if it is negative.
In the time-reversal symmetric case t2sin&=0, the two

masses m+ and m — are equal, and the sum of the
Landau-level spectra derived from the two distinct zone
corners is particle-hole symmetric, and invariant under
Bp Bp. In this case, a" 0 by time-reversal invari-
ance. As the Hainiltonian is changed, tr"i' remains in-
variant, provided the Fermi level remains in a gap.
When Bp 0, models where the Fermi level is in the gap
and rn ~ and m —have the same sign can evolve continu-
ously from the time-reversal invariant case, and hence
have 0'~ 0.
To calculate tr"r for models where rn~ and trt have

opposite signs, I continuously turn on the external field,
then vary m+ and m until they become equal, at the
same time varying the Fermi level so at all times it lies in
a gap. Comparison of the occupation numbers of the
Landau levels obtained this way with those obtained by
continuously applying the field to the time-reversal in-
variant system shows that they differ by the complete
filling of one Landau level. Thus at T=O and with a
fixed chemical potential, the application of a weak exter-
nal magnetic field to a system where m~ and m have
opposite signs induces an extra fteld dependent g-round-
state charge density Atr ~ e Bp/h relative to the field-
independent charge density when these parameters have

f2

FIG. 2. Phase diagram of the spinless electron model with
~ tzlt~ ~

& —,'. Zero-field quantum Hall effect phases (v=+' l,
where o' =ve /h) occur if (Mlt2( &343(sing~. This figure
assumes that i2 is positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.

the same sign. This allows 0." in the limit Bp=0 to be
evaluated as ve /h, where v= 2 [sgn(m —)—sgn(m+)l=+ 1 or 0. The phase diagram of v for the spinless
electron model as a function of M/t2 and p is shown in
Fig. 2.
I note that when the model has neither an inversion

center nor time-reversal invariance (i.e., when both M
and t2sinp are nonzero), so ~m~ ~

e ~m —~, the spec-
trum is no longer invariant under k —k, and the
fermion-doubling principle is defeated. In particular,
along the critical lines in the phase diagram where one of
rrt+ or rrt vanishes, the model has a low-lying massless
spectrum simulating nondegener ate relativistic chiral
fermions.
When m, 0, the fermion field theory derived from

the expansion (2) about the Fermi point with vanishing
gap has a charge-conjugation symmetry (particle-hole
symmetry) which is not present in the lattice model with
t2&0 from which it is derived. In the continuum field
theory, there is no lower bound to the Dirac sea of filled
electron states, and the establishment of absolute as op-
posed to relative values of cr"~ is ambiguous. Jackiw in-
vokes the charge-conjugation symmetry of (2) with
m =0 to assign the value o" =0 in the case of a
particle-hole symmetric Fermi level, where the "zero-
mode" Landau level (4b) is half filled. This would imply
a quantum Hall effect with v= 2 a if the zero mode is
filled, and v =——,

' a if it is empty. This suggests
"charge fractionalization, " and violates the principle
that a noninteracting electron system can only exhibit an
integral QHE. The model studied here shows how the
high-energy cutoff structure of a model with undoubled
fermions described by the relativistic Hamiltonian (2) at
low energies must break the charge-conjugation symme-
try, and give an extra contribution of +' —,

' to v, restor-
ing an integral QHE. Thus even if the low-energy spec-
trum consists of undoubled chiral fermions, their
partners must be present at high energies to restore a
properly integral QHE.
When electron spin is included without any other

change, there is an equal contribution from both spin
components, and 0 "r is doubled. However, a periodic lo-
cal magnetic field with the full symmetry of the lattice
will also couple to electrons with a Zeeman term 0'
=y&S', where S' is the azimuthal electron spin. This
term will relatively displace the up-spin and down-spin
bands by an energy ) hp, and if this exceeds the gap at
the Fermi level, the system will become a partially spin-
polarized metal. If —,

'
~ y ~

ii exceeds 3J3
~ t2 ~, the QHE

phases are completely eliminated, but if it is smaller,
they survive for small enough M and t2sinp. (The direct
transition from the normal to the anomalous semicon-
ductor phase as M is varied is then replaced by an inter-
mediate spin-polarized metallic phase. ) For the realiza-
tion of the internal field proposed earlier, yh (in units of
the rydberg) is given by C'g/a, where C' is another
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Komplex conjugation in position and a preferred local basis:

KΨ(k) = Ψ∗(−k) (7)

Time reversal symmetry: there is a k-independent internal unitary
“rotation” T , that

∃T ∈ U(N) : ∀k ∈ BZ : TKH(k)KT † = H(k) (8)

Θ = TK (9)

C1 =
1

2π

�
dkxdkyFxy (k) (10)
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Topological gapped phases in Graphene

1.   Broken P :  eg  Boron Nitride

( ) v
z

H mK q q

# ( )n d ktimes  wraps around sphere

m m

Break P or T symmetry :   

2 2 2( ) | |vE mq q

Chern number  n=0   :  Trivial Insulator

+K & -K

m m

Chern number  n=1   :  Quantum Hall state

+K

-K

2( ) Sd k

2( ) Sd k- 0 average field ⇒ no need for 

magnetic Brillouin Zone
- Peierls substitution only for

NNN hoppings
- Competition between 

conventional and topological gap


