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Outline

� Review of cavity QED

� Circuit implementation of cavity QED

� Dressed states

� Dispersive limit

� Experimental realization with a Cooper pair box
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Review of cavity QED

� Interaction between atoms and EM modes

� Optical cavity driven by laser

� Transmission properties → atom state

Jaynes-Cummings Hamiltonian

H = ~ωr
(
a†a +

1

2

)
+

~Ω

2
σz + ~g(a†σ− + aσ+) + Hκ + Hγ

� ωr: cavity resonance frequency (bare resonance frequency)

� Ω: atom transition frequency (qubit frequency)

� Hκ: cavity decay (decay rate κ = ωr/Q)

� Hγ : atom decay (decay rate γ)

� g : atom-cavity coupling strength, g = Ermsd/~

Strong coupling limit: g � κ, γ



Review of cavity QED: typical parameter values

parameter symbol 3D optical 3D microwave 1D circuit

resonance/transition frequency ωr/2π, Ω/2π 350THz 51GHz 10GHz

vacuum Rabi frequency g/π, g/ωr 220MHz, 3× 10−7 47 kHz, 1× 10−7 100MHz, 5× 10−3

transition dipole d/ea0 ∼ 1 1× 103 2× 104

cavity lifetime 1/κ,Q 10 ns, 3× 107 1ms, 3× 108 160 ns, 104

atom lifetime 1/γ 61 ns 30ms 2µs

atom transit time ttransit ≥ 50µs 100µs ∞
critical atom number N0 = 2γκ/g2 6× 10−3 3× 10−6 ≤ 6× 10−5

critical photon number m0 = γ2/2g2 3× 10−4 3× 10−8 ≤ 1× 10−6

# of vacuum Rabi �ops nRabi = 2g/(κ + γ) ∼ 10 ∼ 5 ∼ 102

Jaynes-Cummings Hamiltonian

H = ~ωr
(
a†a +

1

2

)
+

~Ω

2
σz + ~g(a†σ− + aσ+) + Hκ + Hγ



Dressed states

Jaynes-Cummings Hamiltonian

H = ~ωr
(
a†a +

1

2

)
+

~Ω

2
σz + ~g(a†σ− + aσ+) + Hκ + Hγ

Without cavity and atom decay,∣∣+, n〉 = cos θn |↓, n〉+ sin θn |↑, n + 1〉∣∣−, n〉 = − sin θn |↓, n〉+ cos θn |↑, n + 1〉

Eigenenergies:

E±,n = (n + 1)~ωr ±
~
2

√
4g2(n + 1) + ∆2

E↑,0 = −
~∆

2

θn =
1

2
tan−1

(
2g
√
n + 1

∆

)
∆ ≡ Ω− ωr: atom-cavity detuning



Dressed states

Jaynes-Cummings Hamiltonian

H = ~ωr
(
a†a +

1

2

)
+

~Ω

2
σz + ~g(a†σ− + aσ+) + Hκ + Hγ

Zero detuning, ∆ = 0

∣∣+, n〉↔ ∣∣−, n〉 lifted → splitting: 2g
√
n + 1

Single-excitation manifold

� state:
∣∣±, 0〉 = (|↑, 1〉 ± |↓, 0〉) /

√
2

� energy: E± = ~ (ωr ± g)

� Vacuum Rabi oscillation

|↓, 0〉 → |↑, 1〉 → |↓, 0〉

� oscillation frequency: g/π

� decay rate: (κ+ γ)/2



Dressed states

Jaynes-Cummings Hamiltonian

H = ~ωr
(
a†a +

1

2

)
+

~Ω

2
σz + ~g(a†σ− + aσ+) + Hκ + Hγ

Large detuning, g/∆� 1 (dispersive regime)

Unitary transformation:

U = exp
[ g

∆
(aσ+ − a†σ−)

]
UHU† ≈ ~

[
ωr +

g2

∆
σz

]
a†a +

~
2

[
Ω +

g2

∆

]
σz

UHU† ≈
~
2

[
2
g2

∆

(
a†a +

1

2

)
+ Ω

]
σz + ~ωra†a

Interpretations

� shift of the resonance frequency by ±χ = ±(g2/∆)

Lamb shift of atomic transition by g2/∆

� ac-Stark shift of atomic transition by

2(g2/∆)(n + 1/2) → backaction



Dressed states

Jaynes-Cummings Hamiltonian

H = ~ωr
(
a†a +

1

2

)
+

~Ω

2
σz + ~g(a†σ− + aσ+) + Hκ + Hγ

Large detuning, g/∆� 1 (dispersive regime)

Single-excitation manifold:∣∣−, 0〉 ∼ −(g/∆) |↓, 0〉+ |↑, 1〉∣∣+, 0〉 ∼ |↓, 0〉+ (g/∆) |↑, 1〉 .

Decay rates:

Γ−,0 ' (g/∆)2γ + κ

Γ+,0 ' γ + (g/∆)2κ.



Dispersive readout

Cavity drive

� drive at ωµw

Hµw (t) = ~ε(t)(a†e−iωµw + ae+iωµw )

� initial state: ground state |↑, 0〉

� go to rotating frame

� transition at ωr − g2/∆ with weight

〈↑, 0|Hµw
∣∣−, n〉 ∼ ε

� transition at Ω + 2g2/∆ with weight

〈↑, 0|Hµw
∣∣+, n〉 ∼ εg

∆

Dispersive Hamiltonian

UHU† ≈ ~
[
ωr +

g2

∆
σz

]
a†a +

~
2

[
Ω +

g2

∆

]
σz



Dispersive readout

Cavity drive

� drive at ωµw

Hµw (t) = ~ε(t)(a†e−iωµw + ae+iωµw )

� initial state: ground state |↑, 0〉

� go to rotating frame

� transition at ωr − g2/∆ with weight

〈↑, 0|Hµw
∣∣−, n〉 ∼ ε

� transition at Ω + 2g2/∆ with weight

〈↑, 0|Hµw
∣∣+, n〉 ∼ εg

∆

Dispersive Hamiltonian

UHU† ≈
~
2

[
2
g2

∆

(
a†a +

1

2

)
+ Ω

]
σz + ~ωra†a



Dispersive readout: |T | or phase

Transmission spectrum

� measuring at ωr ± g2/∆: information is in |T |

� measuring at ωr : information is in the phase

� photons become entangled with the qubit

→ coupling of qubits through a cavity

→ quantum communication



Realization of cQED with the Cooper pair box

� Cavity → 1D coplanar waveguide resonator

Typical values:

fr ∼ 10GHz (hfr/kB ∼ 0.5K)

V 0
rms ∼

√
~ωr/cL ∼ 2µV

Erms ∼ 0.2V/m

Q ∼ 106

� Atom → Cooper pair box

10.1103/PhysRevA.69.062320



Realization of cQED with the Cooper pair box

� Cavity → 1D coplanar waveguide resonator

� Atom → Cooper pair box

HQ = 4Ec

∑
N

(N − Ng )2 |N〉 〈N|

−
EJ

2

∑
N

(|N + 1〉 〈N|+ h.c.)

For 4Ec � EJ and Ng ∈ [0, 1],

HQ = −
Eel

2
σ̄z −

EJ

2
σ̄x

with Eel = 4EC (1− 2Ng )

Double JJ → tunability: EJ cos(πΦext/Φ0)/2

10.1103/PhysRevA.69.062320



Coupled resonator-CPB system

Resonator → ac gate voltage v = V 0
rms(a

† + a)

HQ = −2EC (1− 2Ndc
g )σ̄z −

EJ

2
σ̄x − e

Cg

CΣ

√
~ωr
Lc

(a† + a)(1− 2Ng − σ̄z )

Total Hamiltonian

H = ~ωr
(
a†a +

1

2

)
+

Ω

2
σz − e

Cg

CΣ

√
~ωr
Lc

(a† + a)(1− 2Ng − cos(θ)σz + sin(θ)σx )

With θ = arctan[EJ/4EC (1− 2Ndc
g )] and Ω =

√
E2

J + [4EC (1− 2Ndc
g )]2

Special case:

� For Ng = 1/2, neglecting rapidly oscillating terms → θ = π/2,Ω = EJ and g =
Cg e

CΣ~

√
~ωr
cL

� Away from Ng = 1/2: coupling reduced by sin θ and an extra term ∝ (a† + a)



Experimental realization

A. Wallra� et al., Nature 431, 162�167 (2004)

Resonator

� νr = 6.04GHz

� T? = ~ωr/kB ≈ 300mK

T < 100mK→ n < 0.06

� Vrms =
√

~ωr/2C ≈ 1µV, Erms ≈ 0.2V/m

� Qint ≈ 106

Tr = 1/κ > 100ns even for Q ≈ 104

Qubit

� Cooper pair box

� qubit energy

Ea = ~ωa =
√

E2

J,max
cos2(πΦb) + 16E2

C (1− ng )2

� gate → ng

� external coil → �ux bias Φb

10.1103/PhysRevA.69.062320



Experimental realization: measurement setup

H ≈ ~
(
ωr +

g2

∆
σz

)
a†a +

1

2
~
(
ωa +

g2

∆

)
σz ∆ = ωr − ωa



Experimental realization: read-out

Read-out

� continuous wave with low drive

� �xed read-out tone at ωr

� phase shift ∆φ = tan−1
(
2g2/κ∆

)
Parameter extraction

� periodicity → calibration of ng ,Φb

� cavity-qubit resonance on a set of [ng ,Φb] (red)

EJ,max = 8.0 (±0.1)GHz

EC = 5.2 (±0.1)GHz

Ea =
√

E2

J,max
cos2(πΦb) + 16E2

C (1− ng )2



Experimental realization: vacuum Rabi oscillation

Swept read-out frequency

� spectrum at large detuning (g2/∆κ� 1)

κ/2π = 0.8MHz

n ≈ 1 at resonance

� spectrum for ∆ = 0 at ng = 1

reduced the power by 5 dBm, n ≈ 0.5

νRabi ≈ 11.6MHz

Swept read-out frequency and ng

� ∆ 6= 0, dispersive shift

� ∆ = 0, avoided crossing

Vacuum Rabi splitting



Lifetime: zero detuning

Strong coupling g > κ, γ

� decay rate: (κ+ γ)/2

� Rabi splitting ∝
√
n + 1

� measurement time estimate

ν =10 GHz HEMT ampli�er

namp = kBTN/~ω ∼ 100 photons

tmeas = 2namp/〈n〉κ,
∼ 32µs for 〈n〉 ∼ 1

Low Q cavity (g < κ)

� qubit decay enhanced by a factor Q

Vacuum Rabi splitting



Lifetime: large detuning

Qubit outside cavity

� voltage �uctuation → relaxation

1

T1

=
E2

J

E2

J + E2

el

( e
~

)
2
(
Cg

CΣ

)
2

SV (+Ω)

� spectral density

SV (+Ω) = 2~ΩRe[Z(Ω)]

� estimate T1 ∼ 1µs

Qubit inside the cavity

� noise is �ltered by the cavity

� lower Re[Z(Ω)]

� approximation:

SV (Ω) =
2~ωr
Lc

κ/2

∆2 + (κ/2)2
.

� estimate 1/T1 ≡ γκ = (g/∆)2κ ∼ 1/(64µs)

� large detuning → lifetime enhancement

� total decay rate

γ = γκ + γ⊥ + γNR

� 1D superconducting resonators: γκ dominates



Quantum non-demolition readout



Quantum non-demolition readout

Generic linear detector

Les Houches 2011, A. Clerk

� qubit Hamiltonian Ĥqb = ~Ω
2
σ̂z

� interaction Hamiltonian Ĥint = Aσ̂z F̂

� if
[
Ĥint, Ĥqb

]
= 0

→ non-demolition w.r.t. σ̂z

�

[
Ĥtot, σ̂z

]
=
[
Ĥtot, F̂

]
= 0 → constants of motion

� allows continuous or repeated measurements

Dispersive Hamiltonian

UHU† ≈ ~
[
ωr +

g2

∆
σz

]
a†a +

~
2

[
Ω +

g2

∆

]
σz

� Interaction H in the dispersive limit

Hint = ~
g2

∆
σz â†â

� F̂ = â†â = n̂

� measuring n is QND



Measuring at ωr + g2/∆

Ground/excited: blue/red

Dashed: left scale

� pulse centered at ωr + g2/∆

� pulse duration ∼ 15/κ

� tanh rise and fall

� photon power

P = 〈n〉~ωrκ/2 = 〈Vout〉2/R

� homodyne voltage

〈Vout〉 =
√
R~ωrκ〈a + a†〉/2

� simulation with quantum state di�usion method

� qubit states are mixed, but low transition

probabilities

� information in the transmission (photon number)



Measuring at ωr

Ground/excited: blue/red

Dashed: left scale

� pulse centered at ωr

� pulse duration ∼ 15/κ

� tanh rise and fall

� photon power

P = 〈n〉~ωrκ/2 = 〈Vout〉2/R

� homodyne voltage

〈Vout〉 =
√
R~ωrκ〈a + a†〉/2

� simulation with quantum state di�usion method

� qubit states are mixed, but low transition

probabilities

� information in the phase



Measurement backaction

Dephasing

� changing n

� changing ac Stark shift (g2/∆)nσz

� suppose we measure at ωr and χ < κ

� phase di�erence between g and e state

ϕ(t) = 2
g2

∆

∫ t

0

dt′n(t′)

� mean phase

〈ϕ〉 = 2θ0N

with θ0 = 2g2/κ∆ and N = κn̄t/2

� weak coupling, long-time limit:

Gaussian noise

� evaluate the correlator

〈σ+(t)σ−(0)〉 = 〈e i
∫ t
0 dt′ϕ(t′)〉

' e
− 1

2

(
2
g2

∆

)2 ∫ t
0

∫ t
0 dt1dt2〈n(t1)n(t2)〉

� dephasing rate

Γϕ = 4θ20
κ

2
n̄

� measurement time to resolve the phase change δθ = 2θ0

Tm =
1

2κn̄θ2
0

→ TmΓϕ = 1

� quantum limit: TmΓϕ = 1/2

� origin: re�ected photons carry information

+ Mixing of states

+ Driving transitions



Coherent control

Coherent control

� readout: ωµw near ωr

� control: ωµw near Ω

� dispersive limit, rotating frame →

H1q =
~
2

[
Ω + 2

g2

∆

(
a†a +

1

2

)
− ωµw

]
σz

+~
gε(t)

∆
σx

+~(ωr − ωµw )a†a + ~ε(t)(a† + a)

� choice of ωµw = Ω + (2n + 1)g2/∆

→ σx (rotation around x),

with Rabi frequency gε/∆

� choice of ωµw = Ω + (2n + 1)g2/∆− 2gε/∆

with t = π∆/2
√
2gε

→ Hadamard gate H (rotation of π around x + z)

� HσxH = σz → complete set

Remarks

� n depends on ε

� cavity is only virtually populated with

n̄ ≈ ε2/∆2 ∼ 0.1

� re�ected photons carry no information about the

qubit state (no entanglement)



Experiment

A. Wallra� et al., Phys. Rev. Lett. 95, 060501 (2005)

Setup

� qubit: Cooper pair box

� qubit frequency ωa/2π ≈ 4.3GHz

� read-out at ωRF/2π = ωr/2π ≈ 5.4GHz

� phase shift φ = tan−1
(
2g2/κ∆

)
σz

� Q ∼ 0.7× 104 ↔ κ/2π = 0.73MHz

� large ∆→ de�ning φ = 0

� prepare ground state |↓〉

� work at the charge degeneracy point

� go to ∆/2π ≈ −1.1GHz

� here φ|↓〉 = −35.3 deg ↔ g/2π = 17MHz

� check: apply long microwave pulse,

P|↓〉 = P|↑〉 = 1/2, get φ = 0



Experiment

Measurement protocol

� continuous read-out

� prepare ground state

� pulse at t = 6µs: π, 2π or 3π

� repeated every 50µs, averaged 5× 104 times

� risetime 2/κ ≈ 400ns

� decay T1 ∼ 7.3µs

� contrast C = (φmax − φmin)/(φ|↑〉 − φ|↓〉) ∼ 85%



Summary

Future talks (hopefully)

� Resonator-qubit coupling: direction of E �eld, inductive coupling

� Correspondance between classical circuit description and the J-C Hamiltonian

� Purcell e�ect, Purcell �lter

� Classical analogy: readout of polarizability; quantum capacitance?

� Input-output theory?

� Strong coupling, ultrastrong coupling

� Novel qubit types: Andreev level qubit, Andreev spin qubit, Andreev molecule

� Scalability

� SNR in dispersive readout

Further sources

Alexandre Blais - Quantum Computing with Superconducting Qubits - CSSQI 2012

https://www.youtube.com/watch?v=t5nxusm_Umk (Part 1)

https://www.youtube.com/watch?v=KOZCPl_DyDU (Part 2)

https://www.youtube.com/watch?v=t5nxusm_Umk
https://www.youtube.com/watch?v=KOZCPl_DyDU


Thank you for your attention!
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