## Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides - Orsay

Theory: C.P. Moca, G. Zarand, P. Simon (Orsay), C.H. Chung (Taiwan)

## Motivation, introduction to noise

- What is electronic noise?

Conducting system

$$
I(t)=<l>+\delta I(t)
$$



$$
\mathrm{S}_{\mathrm{I}}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} \omega \tau}\langle\delta \mathrm{I}(t+\tau) \delta \mathrm{I}(t)\rangle
$$

-Why measure noise?
Electronic correlations, effective charge, characteristic energy scale, ...

## How to measure (quantum) noise at 70 GHz ???

## The experimental setup

## $h \nu \ll k_{B} T \quad$ Cross correlation technique

$h v \gg k_{B} T \quad$ Resonant circuits


Carbon nanotube in the Kondo regime


Circuit


SIS junction
Noise detection with SIS junction :
Kouwenhoven's group, Science (2003)
P.M. Billangeon et al.,PRL (2006)

$$
S_{\text {measured }}=K S\left(-v_{0}\right)
$$

## Quantum noise detection with SIS junction



$$
k_{B} T \ll e V_{D}
$$

$$
\begin{aligned}
I_{\mathrm{PAT}}\left(V_{D}\right)= & \int_{0}^{\infty} d \nu\left(\frac{e}{h \nu}\right)^{2} S_{V}(-\nu) I_{\mathrm{QP}, 0}\left(V_{D}+\frac{h \nu}{e}\right) \longleftarrow \text { Related to the emission noise } \\
& +\int_{0}^{e V_{D} / h} d \nu\left(\frac{e}{h \nu}\right)^{2} S_{V}(\nu) I_{\mathrm{QP}, 0}\left(V_{D}-\frac{h \nu}{e}\right) \longleftarrow \text { Related to the absorption noise } \\
& -\int_{-\infty}^{+\infty} d \nu\left(\frac{e}{h \nu}\right)^{2} S_{V}(\nu) I_{\mathrm{QP}, 0}\left(V_{D}\right), \longleftarrow \longleftarrow \text { Renormalizes the elastic current }
\end{aligned}
$$

## Resonant coupling between a Carbon nanotube and a SIS detector


$\mathrm{T}=20 \mathrm{mK}$ - measurement temperature

## I(V) for the detector and Resonator impedance


$I(V)=\operatorname{Re}[Z(2 e V / h)] I_{C}^{2} / 2 V$
$Z(\omega)$ - impedance of the resonator
$\mathrm{I}_{\mathrm{C}}-$ critical current across the junction

## Source: Nanotube Quantum Dot with one electron



## Nanotube in Kondo regime

## Quantum fluctuations

## (odd \# of electrons)



Kondo effect screens the spin

## Kondo effect in nanotube



Center of the ridge $\boldsymbol{\rightarrow} \mathrm{T}_{\mathrm{k}}=1.4 \mathrm{~K} \Leftrightarrow \mathrm{v}=30 \mathrm{GHz}$

## Functional RG theory

## Simple model

## Kondo Hamiltonian :

Dot spin


$$
\begin{aligned}
H_{\mathrm{int}}= & \frac{1}{2} \sum_{\alpha, \beta=L, R} \sum_{\sigma, \sigma^{\prime}} j_{\alpha, \beta} \mathbf{S} \psi_{\alpha \sigma}^{\dagger} \sigma_{\sigma \sigma^{\prime}} \psi_{\beta \sigma^{\prime}} \\
& \alpha \in\{L, R\}
\end{aligned}
$$

Use pseudofermions (Abrikosov)

$$
\hat{S}^{i} \rightarrow \sum_{s, s^{\prime}} \frac{1}{2} f_{s}^{\dagger} \sigma_{s, s^{\prime}}^{i} f_{s^{\prime}} \quad \quad \sum_{s} f_{s}^{\dagger} f_{s}=1
$$

Do perturbative RG for $S(\omega, V)$

## Difficulties

## Kondo effect


(solved originally by Anderson)

Logarithmic singularities with „fine structure"

$$
\ln (\omega / D), \quad \ln (|\omega-e V| / D)
$$

Standard RG is not accurate enough

## Paaske, Rosch, Kroha, Wölfle:

## Current conservation???

Pertubation theory for the coupling vertex:

General FRG theory for: $\quad \max (\omega, e V, T, \mu B) \geq T_{K}$

## Real time path integral on the Keldysh contour

## Action: $\quad \mathcal{S}=\mathcal{S}_{\text {lead }}+\mathcal{S}_{\text {spin }}+\mathcal{S}_{\text {int }}$

## quadratic

## Interaction part:

## Keldysh label


$s_{\kappa}= \pm 1$
Interaction initially local:

$$
g_{\alpha \beta}^{(0)}(t)=j_{\alpha \beta} \delta(t)
$$



## Generating RG equations

1. Expand $\langle U(-\infty,-\infty)\rangle$ in $S_{\mathrm{int}}$
2. Rescale

$$
a \rightarrow a^{\prime}, \quad g_{\alpha \beta}(t, a) \rightarrow g_{\alpha \beta}^{\prime}\left(t, a^{\prime}\right)
$$


"Standard" RG: $\quad g_{\alpha \beta}(t) \rightarrow \delta(t) \int \mathrm{d} t g_{\alpha \beta}(t)$

## Renormalized vertex



## Current vertex

Current operator from equation of motion:

$$
\hat{I}_{L}(t)=-\hat{I}_{R}(t)=\sum_{\alpha \beta} \frac{1}{2} v_{\alpha \beta}^{L} \hat{\mathbf{S}}(t) \cdot \hat{\psi}_{\alpha}^{\dagger}(t) \sigma \hat{\psi}_{\beta}(t)
$$



Current conservation

$$
\mathbf{v}^{L}=-\mathbf{v}^{R}=\left(\begin{array}{cc}
0 & -i j_{L R} \\
i j_{L R} & 0
\end{array}\right)
$$

Generating functional: $Z\left[h_{\alpha}^{\kappa}(t)\right] \equiv\left\langle e^{-i \sum_{\kappa, \alpha} \int \mathrm{d} t h_{\alpha}^{\kappa}(t) I_{\alpha}^{\kappa}(t)}\right\rangle_{\mathcal{S}}$
RG:

1. Expand $Z\left[h_{\alpha}^{\kappa}(t)\right] \quad$ in $\quad h_{\alpha}^{\kappa}(t)$ and in $S_{\text {int }}$
2. Rescale $\quad a \rightarrow a^{\prime}, \quad g_{\alpha \beta}(t, a) \rightarrow g_{\alpha \beta}^{\prime}\left(t, a^{\prime}\right)$
and $\quad I_{\alpha}^{K}(t)$

## Current vertex renormalization

## Current necessarily becomes non-local

$$
\begin{aligned}
& \text { time of the } \\
& \text { measurement! } \\
& I_{L}^{\kappa}(t)=\frac{e^{2}}{4} \sum_{\kappa} \sum_{\alpha \beta} \int \mathrm{d} t_{1} \mathrm{~d} t_{2} V_{\alpha \beta}\left(t_{1}-t, t-t_{2}, a\right) \\
& \bar{f}^{\kappa}(t) \vec{\sigma} f^{\kappa}(t) \cdot \bar{\psi}_{\alpha}^{\kappa}\left(t_{1}\right) \vec{\sigma} \psi_{\beta}^{\kappa}\left(t_{2}\right),
\end{aligned}
$$

Reason:
It is not enought to know the times the electrons enters or leave the dot but also the time of the current measurement must be track of

## RG equations

## Current vertex scaling:

$$
\begin{aligned}
\delta(Y) & ={ }^{*}+0 \\
& +\quad+\quad
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{V}^{L}\left(\omega_{1}, \omega_{2}\right)}{\mathrm{d} l} & =\mathbf{V}^{L}\left(\omega_{1}, \omega_{2}\right) \mathbf{q}\left(\omega_{2}, a\right) \mathbf{g}\left(\omega_{2}\right) \\
& +\mathbf{g}\left(\omega_{1}\right) \mathbf{q}\left(\omega_{1}, a\right) \mathbf{V}^{L}\left(\omega_{1}, \omega_{2}\right)
\end{aligned}
$$

Initial condition:

$$
\mathbf{V}^{L / R}\left(\tau_{1}, \tau_{2}, a_{0}\right)=\delta\left(\tau_{1}\right) \delta\left(\tau_{2}\right) \mathbf{v}^{L / R}
$$

Current conservation:

$$
\mathbf{v}^{L}=-\mathbf{v}^{R} \quad \square \quad V_{\alpha \beta}^{L}\left(\omega_{1}, \omega_{2}\right)=-V_{\alpha \beta}^{R}\left(\omega_{1}, \omega_{2}\right)
$$

$I_{L}^{\kappa}(t)+I_{R}^{\kappa}(t) \equiv 0$
Automatically satisfied at the functional level!

## Renormalized current vertex

$$
\mathrm{eV} / T_{K}=10
$$



## Computing the noise

## Functional RG noise formula:



$$
\begin{aligned}
S_{L L}^{>}(\omega)= & \frac{e^{2}}{2} S(S+1) \int \frac{\mathrm{d} \tilde{\omega}}{2 \pi} \operatorname{Tr}\left\{\mathbf{V}^{L}\left(\tilde{\omega}_{-}, \tilde{\omega}_{+}\right)\right. \\
& \left.\mathbf{G}^{>}\left(\tilde{\omega}_{+}\right) \mathbf{V}^{L}\left(\tilde{\omega}_{+}, \tilde{\omega}_{-}\right) \mathbf{G}^{<}\left(\tilde{\omega}_{-}\right)\right\}
\end{aligned}
$$

$$
\tilde{\omega}_{ \pm}=\tilde{\omega} \pm \frac{\omega}{2} \quad G_{\alpha \beta}^{>/<}(\omega)= \pm i 2 \pi \delta_{\alpha \beta} f\left( \pm\left(\omega-\mu_{\alpha}\right)\right)
$$

## Theoretical Prediction

Signature of the Kondo effect on noise :
Logarithmic singularity at $\mathrm{V}=\mathrm{h} v / \mathrm{e}$



## Symmetrized noise spectra



Non-equilibrium Kondo effect

## Non-equilibrium ac linear conductivity

$$
V_{S D}=V+\delta V_{\omega} \cos (\omega t) \quad \longleftrightarrow I(t)=G(\omega, V) \delta V_{\omega} \cos (\omega t)+\ldots
$$

Non-equlibrium ac-conductance
$\operatorname{Re} G_{L L}(\omega, V)=-\frac{1}{\hbar \omega}\left[S_{L L}^{>}(\omega)-S_{L L}^{<}(\omega)\right] \quad$ Safi(2009)



## Back to experiment...

## Back to experiment...



## Back to experiment...



Singularity related to the Kondo resonance at hv~ $\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{K}}$ $\rightarrow$ Qualitatively consistent but not quantitatively

Theory: no free fitting parameter!

- Kondo temperature TK=1.4K
- asymmetry a=0.67


## Additional decoherence ???

(Monreal et al. PRB 05; Van Roermund et al. PRB 10; De Franceschi et al. PRL 02)

## Fit of the noise spectra: voltage dependent relaxation

## Single choice of $\Gamma_{\text {spin }}(V)$ must fit everything...



## Fitted the coherence rate...



Approximate form: $\quad h / \tau_{S} \approx \alpha k_{B} T_{K}^{\mathrm{RG}} \operatorname{atan}\left(\frac{\beta e V_{S}}{k_{B} T_{K}^{\mathrm{RG}}}\right)$

## Conclusions

## Theory:

- Real time functional RG formalism
$\square$ Current-conserving scheme
- $S(\omega, V)$ shows strong anomalies at $\omega= \pm e V$
- $G(\omega, V)$ shows split Kondo resonance


## Experiment:

- Non-equilibrium quantum noise measurment
- Logarithmic anomalies observed
- Additional spin relaxation must be assumed to agree with theory

