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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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Motivation: toward 2-qubit programmable quantum computer

• there are 5-qubit quantum computer prototypes with transmons  
• spin qubits might have longer lifetime 
• spin qubits are smaller than transmons 
• this work (#1): warm-up for: spin-based quantum computer prototype 
• this work (#2): warm-up for: transmon processor, spin qubit memory 

!

Q: in this experiment, does the spin qubit have longer lifetime than the transmon? 
A: No: 

2

us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture

IBM Quantum Experience: 5 transmons This paper: 1 spin qubit + 1 transmon



How far is this from a 2-qubit programmable quantum computer?

• reflectometry on resonator!
!

• spectroscopic evidence for qubit-resonator coupling!
• single-shot readout of qubits 
• single-qubit spectroscopy!
• single-qubit gates 
• state transfer between qubit and resonator 
!

• spectroscopic evidence for qubit-resonator-qubit coupling!
• two-qubit gate 



Setup

2

us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
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driven to a mixed state, which is observed as a change in
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out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.
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within (1, 1, 1) that have S = Sz = 1/2 equal to the
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transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
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Jaynes-Cummings Hamiltonian

Blais et al., Phys. Rev. A 69, 062320 (2004)

Setup: qubit interacting with a 
harmonic oscillator 

H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$

%− ,n& = − sin 'n%↓ ,n& + cos 'n%↑ ,n + 1& , #3$

and ground state %↑ ,0& with corresponding eigenenergies

E ±,n = #n + 1$!"r ±
!

2
'4g2#n + 1$ + (2, #4$

E↑,0 = −
!(

2
. #5$

In these expressions,

'n =
1

2
tan−1!2g'n + 1

(
" , #6$

and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g* % ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi* 1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &. 1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 30 10−7 47 kHz, 10 10−7 100 MHz, 50 10−3

Transition dipole d /ea0 )1 10 103 20 104

Cavity lifetime 1/% ,Q 10 ns, 30 107 1 ms, 30 108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 1 50 /s 100 /s 2

Critical atom number N0=2&% /g
2 60 10−3 30 10−6 . 60 10−5

Critical photon number m0=&
2 /2g2 30 10−4 30 10−8 . 10 10−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102

BLAIS et al. PHYSICAL REVIEW A 69, 062320 (2004)
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oscillator = resonator = cavity = one mode of a microwave resonator

qubit = e-charge, e-spin, superconducting qubit
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do perturbation theory: (16)
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7. ‘strong coupling’ regime: �, ⌧ g

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
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standard heterodyne detection scheme [30] as a change
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transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.
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mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
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and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]
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and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g* % ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi* 1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &. 1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 30 10−7 47 kHz, 10 10−7 100 MHz, 50 10−3

Transition dipole d /ea0 )1 10 103 20 104

Cavity lifetime 1/% ,Q 10 ns, 30 107 1 ms, 30 108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 1 50 /s 100 /s 2

Critical atom number N0=2&% /g
2 60 10−3 30 10−6 . 60 10−5

Critical photon number m0=&
2 /2g2 30 10−4 30 10−8 . 10 10−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102
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Table I. from Blais et al., Phys. Rev. A 69, 062320 (2004)

Typical parameter values in!
`cavity/circuit quantum electrodynamics’

strong coupling achieved in circuit QED

we assume strong coupling from now on
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H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$

%− ,n& = − sin 'n%↓ ,n& + cos 'n%↑ ,n + 1& , #3$

and ground state %↑ ,0& with corresponding eigenenergies

E ±,n = #n + 1$!"r ±
!

2
'4g2#n + 1$ + (2, #4$

E↑,0 = −
!(

2
. #5$

In these expressions,

'n =
1

2
tan−1!2g'n + 1

(
" , #6$

and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g* % ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi* 1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &. 1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 30 10−7 47 kHz, 10 10−7 100 MHz, 50 10−3

Transition dipole d /ea0 )1 10 103 20 104

Cavity lifetime 1/% ,Q 10 ns, 30 107 1 ms, 30 108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 1 50 /s 100 /s 2

Critical atom number N0=2&% /g
2 60 10−3 30 10−6 . 60 10−5

Critical photon number m0=&
2 /2g2 30 10−4 30 10−8 . 10 10−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102

BLAIS et al. PHYSICAL REVIEW A 69, 062320 (2004)

062320-2

In the dispersive regime, the resonator acquires  
a qubit-state dependent shift of its eigenfrequency.
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tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
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transition dipole moment d and the rms zero-point electric
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qubit-oscillator detuning:

For large detuning, g /!"1, expansion of Eq. (4) yields
the dispersive spectrum shown in Fig. 1(c). In this situation,
the eigenstates of the one excitation manifold take the form
[15]

!− ,0" # − $g/!%!↓ ,0" + !↑ ,1" , $7%

!+ ,0" # !↓ ,0" + $g/!%!↑ ,1" . $8%

The corresponding decay rates are then simply given by

#− ,0 & $g/!%2$ + % , $9%

#+ ,0 & $ + $g/!%2% . $10%

More insight into the dispersive regime is gained by mak-
ing the unitary transformation

U = exp' g
!

$a&+ − a†&−%( $11%

and expanding to second order in g (neglecting damping for
the moment) to obtain

UHU† ) ''(r + g2! &z(a†a + '2') + g2! (&z. $12%

As is clear from this expression, the atom transition is ac
Stark/Lamb shifted by $g2 /!%$n+1/2%. Alternatively, one
can interpret the ac Stark shift as a dispersive shift of the
cavity transition by &zg2 /!. In other words, the atom pulls
the cavity frequency by ±g2 /%!.

III. CIRCUIT IMPLEMENTATION OF CAVITY QED

We now consider the proposed realization of cavity QED
using the superconducing circuits shown in Fig. 2. A 1D
transmission line resonator consisting of a full-wave section
of superconducting coplanar waveguide plays the role of the
cavity and a superconducting qubit plays the role of the
atom. A number of superconducting quantum circuits could
function as artificial atom, but for definiteness we focus here
on the Cooper-pair box [6,16–18].

A. Cavity: Coplanar stripline resonator

An important advantage of this approach is that the zero-
point energy is distributed over a very small effective volume
()10−5 cubic wavelengths) for our choice of a quasi-one-
dimensional transmission line “cavity.” As shown in Appen-
dix A, this leads to significant rms voltages Vrms

0 #*'(r /cL
between the center conductor and the adjacent ground plane
at the antinodal positions, where L is the resonator length and
c is the capacitance per unit length of the transmission line.
At a resonant frequency of 10 GHz $h* /kB#0.5 K% and for
a 10 +m gap between the center conductor and the adjacent
ground plane, Vrms#2 +V corresponding to electric fields
Erms#0.2 V/m, some 100 times larger than achieved in the
3D cavity described in Ref. [3]. Thus, this geometry might
also be useful for coupling to Rydberg atoms [19].

In addition to the small effective volume and the fact that
the on-chip realization of CQED shown in Fig. 2 can be
fabricated with existing lithographic techniques, a
transmission-line resonator geometry offers other practical
advantages over lumped LC circuits or current-biased large
Josephson junctions. The qubit can be placed within the cav-
ity formed by the transmission line to strongly suppress the
spontaneous emission, in contrast to a lumped LC circuit,
where without additional special filtering, radiation and para-
sitic resonances may be induced in the wiring [20]. Since the
resonant frequency of the transmission line is determined
primarily by a fixed geometry, its reproducibility and immu-
nity to 1/ f noise should be superior to Josephson junction
plasma oscillators. Finally, transmission-line resonances in
coplanar waveguides with Q#106 have already been dem-
onstrated [21,22], suggesting that the internal losses can be
very low. The optimal choice of the resonator Q in this ap-
proach is strongly dependent on the intrinsic decay rates of
superconducting qubits which, as described below, are pres-
ently unknown, but can be determined with the setup pro-
posed here. Here we assume the conservative case of an
overcoupled resonator with a Q#104, which is preferable for
the first experiments.

B. Artificial atom: The Cooper-pair box

Our choice of “atom,” the Cooper-pair box [6,16], is a
mesoscopic superconducting island. As shown in Fig. 3, the

FIG. 2. (Color online). Schematic layout and equivalent lumped
circuit representation of proposed implementation of cavity QED

using superconducting circuits. The 1D transmission line resonator

consists of a full-wave section of superconducting coplanar wave-

guide, which may be lithographically fabricated using conventional

optical lithography. A Cooper-pair box qubit is placed between the

superconducting lines and is capacitively coupled to the center trace

at a maximum of the voltage standing wave, yielding a strong elec-

tric dipole interaction between the qubit and a single photon in the

cavity. The box consists of two small $#100 nm, 100 nm% Joseph-
son junctions, configured in a #1 +m loop to permit tuning of the

effective Josephson energy by an external flux -ext. Input and out-
put signals are coupled to the resonator, via the capacitive gaps in

the center line, from 50) transmission lines which allow measure-

ments of the amplitude and phase of the cavity transmission, and

the introduction of dc and rf pulses to manipulate the qubit states.

Multiple qubits (not shown) can be similarly placed at different
antinodes of the standing wave to generate entanglement and two-

bit quantum gates across distances of several millimeters.
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`large detuning regime’ or `dispersive regime’:
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field of the cavity mode. Strong coupling is achieved when
g* % ,& [15].
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quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.
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decay rate so that we can understand their fundamental
physical origins as well as engineer improvements. Besides
!" evaluated above, there are two additional contributions to
the total damping rate !=!"+!!+!NR. Here !! is the decay
rate into photon modes other than the cavity mode and !NR is
the rate of other (possibly nonradiative) decays. Optical cavi-
ties are relatively open and !! is significant, but for 1D
microwave cavities, !! is expected to be negligible (despite
the very large transition dipole). For Rydberg atoms the two
qubit states are both highly excited levels and !NR represents
(radiative) decay out of the two-level subspace. For Cooper-
pair boxes, !NR is completely unknown at the present time,
but could have contributions from phonons, two-level sys-
tems in insulating [20] barriers and substrates, or thermally
excited quasiparticles.
For Cooper box qubits not inside a cavity, recent experi-

ments [18] have determined a relaxation time 1/!=T1
!1.3 #s despite the backaction of continuous measurement
by a SET electrometer. Vion et al. [17] found T1!1.84 #s
(without measurement backaction) for their charge-phase qu-
bit. Thus, in these experiments, if there are nonradiative de-
cay channels, they are at most comparable to the vacuum
radiative decay rate (and may well be much less) estimated
using Eq. (18). Experiments with a cavity will present the
qubit with a simple and well-controlled electromagnetic en-
vironment, in which the radiative lifetime can be enhanced
with detuning to 1/!"$ 64 #s, allowing !NR to dominate
and yielding valuable information about any nonradiative
processes.

VI. DISPERSIVE QND READOUT OF QUBITS

In addition to lifetime enhancement, the dispersive regime
is advantageous for readout of the qubit. This can be realized
by microwave irradiation of the cavity and then probing the
transmitted or reflected photons [26].

A. Measurement protocol

A drive of frequency %#w on the resonator can be mod-
eled by [15]

H#w"t# = &'"t#"a†e−i%#wt + ae+i%#wt# , "20#

where '"t# is a measure of the drive amplitude. In the dis-
persive limit, one expects from Fig. 1(c) peaks in the trans-
mission spectrum at %r−g

2 /( and )+2g2 /( if the qubit is
initially in its ground state. In a frame rotating at the drive
frequency, the matrix elements for these transitions are, re-
spectively,

$↑ ,0%H#w%− ,n& ! ' ,

$↑ ,0%H#w%+ ,n& !
'g

(
. "21#

In the large detuning case, the peak at )+2g2 /(, corre-
sponding approximatively to a qubit flip, is highly sup-
pressed.
The matrix element corresponding to a qubit flip from the

excited state is also suppressed and, as shown in Fig. 5,

depending on the qubit being in its ground or excited states,
the transmission spectrum will present a peak of width " at
%r−g

2 /( or %r+g
2 /(. With the parameters of Table I, this

dispersive pull of the cavity frequency is ±g2 /"(= ±2.5 line-
widths for a 10% detuning. Exact diagonalization (4) shows
that the pull is power dependent and decreases in magnitude
for cavity photon numbers on the scale n=ncrit'(2 /4g2. In
the regime of nonlinear response, single-atom optical bista-
bility [14] can be expected when the drive frequency is off
resonance at low power but on resonance at high power [29].
The state-dependent pull of the cavity frequency by the

qubit can be used to entangle the state of the qubit with that
of the photons transmitted or reflected by the resonator. For
g2 /"($ 1, as in Fig. 5, the pull is greater than the linewidth,
and irradiating the cavity at one of the pulled frequencies
%r±g

2 /(, the transmission of the cavity will be close to
unity for one state of the qubit and close to zero for the other
[30].
Choosing the drive to be instead at the bare cavity fre-

quency %r, the state of the qubit is encoded in the phase of
the reflected and transmitted microwaves. An initial qubit
state %*&=+%↑ &+,%↓ & evolves under microwave irradiation
into the entangled state %-&=+%↑ ,.&+,%↓ ,−.&, where tan .
=2g2 /"( and %±.& are (interaction representation) coherent
states with the appropriate mean photon number and oppo-
site phases. In the situation where g2 /"(/ 1, this is the most
appropriate strategy.
It is interesting to note that such an entangled state can be

used to couple qubits in distant resonators and allow quan-
tum communication [31]. Moreover, if an independent mea-
surement of the qubit state can be made, such states can be
turned into photon Schrödinger cats [15].
To characterize these two measurement schemes corre-

sponding to two different choices of the drive frequency, we
compute the average photon number inside the resonator n̄
and the homodyne voltage on the 50) impedance at the
output of the resonator. Since the power coupled to the out-
side of the resonator is P= $n&&%r" /2= $Vout&2 /R, the homo-
dyne voltage can be expressed as $Vout&=(R&%r"$a+a†& /2
and is proportional to the real part of the field inside the
cavity.

FIG. 5. (Color online) Transmission spectrum of the cavity,

which is “pulled” by an amount ±g2 /(= ±2.5%r0 10
−4, depending

on the state of the qubit (red for the excited state, blue for the
ground state). To perform a measurement of the qubit, a pulse of

microwave photons, at a probe frequency %#w=%r or %r±g
2 /(, is

sent through the cavity. Additional peaks near ) corresponding to

qubit flips are suppressed by g /(.
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`Dispersive qubit readout’ in circuit QED (if tranmission is measured)

H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$

%− ,n& = − sin 'n%↓ ,n& + cos 'n%↑ ,n + 1& , #3$

and ground state %↑ ,0& with corresponding eigenenergies

E ±,n = #n + 1$!"r ±
!

2
'4g2#n + 1$ + (2, #4$

E↑,0 = −
!(

2
. #5$

In these expressions,

'n =
1

2
tan−1!2g'n + 1

(
" , #6$

and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g* % ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi* 1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &. 1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 30 10−7 47 kHz, 10 10−7 100 MHz, 50 10−3

Transition dipole d /ea0 )1 10 103 20 104

Cavity lifetime 1/% ,Q 10 ns, 30 107 1 ms, 30 108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 1 50 /s 100 /s 2

Critical atom number N0=2&% /g
2 60 10−3 30 10−6 . 60 10−5

Critical photon number m0=&
2 /2g2 30 10−4 30 10−8 . 10 10−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102
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In the dispersive regime, the qubit can be read out by probing the oscillator.

drive frequency 
of oscillator

amplitude of 
oscillator

H = !"r!a†a + 1
2
" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]
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and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g* % ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the

electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-

ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-

dimensional manifolds of states with n−1 quanta is lifted by

2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi* 1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box

decay rate is unknown; a conservative value equal to the current experimental upper bound &. 1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g /), g /"r 220 MHz, 30 10−7 47 kHz, 10 10−7 100 MHz, 50 10−3

Transition dipole d /ea0 )1 10 103 20 104

Cavity lifetime 1/% ,Q 10 ns, 30 107 1 ms, 30 108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s

Atom transit time ttransit 1 50 /s 100 /s 2

Critical atom number N0=2&% /g
2 60 10−3 30 10−6 . 60 10−5

Critical photon number m0=&
2 /2g2 30 10−4 30 10−8 . 10 10−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102
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Quarter-wave CPW resonator

• 14 nm NbTiN film, out-of-plane B field
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If reflection is measured (data from Gergő Fülöp) 2

us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
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lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture

A: complex reflectance

Reflectance of Coupling resonator is used to infer RX qubit splitting 2

us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
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probe tone power is kept su�ciently low to ensure that
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than one.
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amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.
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ture with the Al top gate electrodes shown in Fig. 1(c).
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trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
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TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
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The sample (dashed line) contains four quantum systems with
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an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
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Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
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flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
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model and by including the position of higher excited
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ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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of asymmetric charge states and therefore a decrease in
the electric dipole coupling strength gRX. In contrast,
for � > 0 the RX qubit states have dominantly asym-
metric charge configurations (2, 0, 1) and (1, 0, 2). The
qubit therefore has a dominant charge character, which
increases, together with gRX, with increasing positive �.
Independent of �, the RX qubit states have the same
total spin and spin z-component such that they can di-
rectly be driven by electric fields [33] and be operated in
the absence of an applied external magnetic field. This
is in contrast to other spin qubit implementations, which
rely on engineered or intrinsic spin-orbit interaction [34–
39] for spin-charge coupling.

Four similar RX qubit tunnel coupling configurations
were used in this work as listed in Table I. We use two-
tone spectroscopy [31] to characterize the RX qubit dis-
persion: we apply a probe tone on resonance with the
coupling resonator, drive the qubit via the gate line and
tune its energy with �. The spectroscopic signal in
Fig. 1(e) agrees with the theoretically expected qubit dis-
persion for qubit configuration 3 (see Table I).

RESONANT INTERACTION

First, we investigate the resonant interaction between
the coupling resonator and the RX qubit. To start
with, both qubits are energetically detuned from the
coupling resonator. Then, we sweep � to cross a res-
onance between the RX qubit and the resonator, while
keeping the transmon far detuned. We observe a well
resolved avoided crossing in the |S11| reflectance spec-
trum shown in Fig. 2(a) and extract a spin qubit-
photon coupling strength of gRX/2⇡ = 52MHz from a
fit to the vacuum Rabi mode splitting shown in black in
Fig. 2(c). The spin qubit and the coupling resonator pho-
tons are strongly coupled since gRX > C, �2,RX , where
�2,RX/2⇡ = 11MHz is the RX qubit decoherence rate
and C/2⇡ = 4.6MHz is the bare coupling resonator
linewidth. The decoherence rate is determined inde-
pendently with power dependent two-tone spectrosopy.
We dispersively detune the coupling resonator with �C

from the RX qubit and extrapolate the width of the
peak observed in the two-one spectroscopy response [c.f.
Fig. 1(e)] to zero drive power [31].

Next, we characterize the interaction between the
transmon and the coupling resonator. We tune the trans-
mon through the resonator resonance by sweeping �T.
For this measurement the RX qubit is far detuned in
energy. We resolve the hybridized states of the trans-
mon and the resonator photons in the measured |S11|
spectrum in Fig. 2(b). They are separated in energy by
the vacuum Rabi mode splitting 2gT/2⇡ = 360MHz il-
lustrated in Fig. 2(c) in green. We perform power de-
pendent two-tone spectroscopy to extract the transmon
linewidth by probing the read-out resonator. We obtain

Δ/h [GHz]

ν p 
[G

H
z]

-9 -8 -7 -6

(a)

ΦT/Φ0

|S11|

0

0.25

0.5

0.75

1

ν p 
[G

H
z]

Δ/h [GHz]
-10 -8 -6 -4

(d)

0.25 0.3 0.35

RX

Tmon

|+

|-

RX

νRX νC νT
∆

3.9

4.1

4.3

4.5

3.9

4.1

4.3

4.5
|S11|

0.6

0.8

1

res. res.

10.5
|S11|

|S11|

(b) (c)

(f )

|+

|- |-,-

νRX νC νT
ΦT

νRX νC νT
∆

1

0.5 1

0.5

Δ/h [GHz]
-10 -8 -4-6

(e)

E E

E

|-,+

|+,-

|+,+

0.2

FIG. 2. Resonant interaction. The schematics at the top of
the graphs indicate the energy levels of the RX qubit (⌫RX),
coupling resonator (⌫C) and transmon (⌫T). Theory curves in
the absence (presence) of coupling are shown as dashed black
(red) lines. (a) Reflected amplitude |S11| as a function of RX
detuning � and probe frequency ⌫p for RX qubit configura-
tion 2. (b) Reflected amplitude |S11| as a function of relative
transmon flux �T/�0 and ⌫p. The states |±i are discussed in
the main text. (c) Cuts from panel (a) at �/h ' �7.6GHz
(black) and from panel (b) at �T/�0 ' 0.3 (green) as marked
with arrows in the respective panels. The black trace is o↵set
in |S11| by 0.1. Theory fits are shown as red dashed lines. (d)
|S11| as a function of � and ⌫p for RX qubit configuration
2. The states |�,±i and |+,±i are explained in the main
text. (e) Theory result for parameters as in (d). Values for
|S11| are scaled to the experimental data range in (d). (f)
Cuts from panel (d) and from panel (e) (without scaling) at
�/h ' �9.8GHz and �/h ' �5.6GHz. The experimental
cuts are marked with black and blue arrows in (d), the theory
cuts are indicated with red arrows in (e). The blue trace is
o↵set in |S11| by 0.2.

�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/

p
2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and

3
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Independent of �, the RX qubit states have the same
total spin and spin z-component such that they can di-
rectly be driven by electric fields [33] and be operated in
the absence of an applied external magnetic field. This
is in contrast to other spin qubit implementations, which
rely on engineered or intrinsic spin-orbit interaction [34–
39] for spin-charge coupling.

Four similar RX qubit tunnel coupling configurations
were used in this work as listed in Table I. We use two-
tone spectroscopy [31] to characterize the RX qubit dis-
persion: we apply a probe tone on resonance with the
coupling resonator, drive the qubit via the gate line and
tune its energy with �. The spectroscopic signal in
Fig. 1(e) agrees with the theoretically expected qubit dis-
persion for qubit configuration 3 (see Table I).

RESONANT INTERACTION

First, we investigate the resonant interaction between
the coupling resonator and the RX qubit. To start
with, both qubits are energetically detuned from the
coupling resonator. Then, we sweep � to cross a res-
onance between the RX qubit and the resonator, while
keeping the transmon far detuned. We observe a well
resolved avoided crossing in the |S11| reflectance spec-
trum shown in Fig. 2(a) and extract a spin qubit-
photon coupling strength of gRX/2⇡ = 52MHz from a
fit to the vacuum Rabi mode splitting shown in black in
Fig. 2(c). The spin qubit and the coupling resonator pho-
tons are strongly coupled since gRX > C, �2,RX , where
�2,RX/2⇡ = 11MHz is the RX qubit decoherence rate
and C/2⇡ = 4.6MHz is the bare coupling resonator
linewidth. The decoherence rate is determined inde-
pendently with power dependent two-tone spectrosopy.
We dispersively detune the coupling resonator with �C

from the RX qubit and extrapolate the width of the
peak observed in the two-one spectroscopy response [c.f.
Fig. 1(e)] to zero drive power [31].

Next, we characterize the interaction between the
transmon and the coupling resonator. We tune the trans-
mon through the resonator resonance by sweeping �T.
For this measurement the RX qubit is far detuned in
energy. We resolve the hybridized states of the trans-
mon and the resonator photons in the measured |S11|
spectrum in Fig. 2(b). They are separated in energy by
the vacuum Rabi mode splitting 2gT/2⇡ = 360MHz il-
lustrated in Fig. 2(c) in green. We perform power de-
pendent two-tone spectroscopy to extract the transmon
linewidth by probing the read-out resonator. We obtain
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FIG. 2. Resonant interaction. The schematics at the top of
the graphs indicate the energy levels of the RX qubit (⌫RX),
coupling resonator (⌫C) and transmon (⌫T). Theory curves in
the absence (presence) of coupling are shown as dashed black
(red) lines. (a) Reflected amplitude |S11| as a function of RX
detuning � and probe frequency ⌫p for RX qubit configura-
tion 2. (b) Reflected amplitude |S11| as a function of relative
transmon flux �T/�0 and ⌫p. The states |±i are discussed in
the main text. (c) Cuts from panel (a) at �/h ' �7.6GHz
(black) and from panel (b) at �T/�0 ' 0.3 (green) as marked
with arrows in the respective panels. The black trace is o↵set
in |S11| by 0.1. Theory fits are shown as red dashed lines. (d)
|S11| as a function of � and ⌫p for RX qubit configuration
2. The states |�,±i and |+,±i are explained in the main
text. (e) Theory result for parameters as in (d). Values for
|S11| are scaled to the experimental data range in (d). (f)
Cuts from panel (d) and from panel (e) (without scaling) at
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�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/

p
2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and

Vacuum Rabi splitting: low (<1) photon number is important here
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of asymmetric charge states and therefore a decrease in
the electric dipole coupling strength gRX. In contrast,
for � > 0 the RX qubit states have dominantly asym-
metric charge configurations (2, 0, 1) and (1, 0, 2). The
qubit therefore has a dominant charge character, which
increases, together with gRX, with increasing positive �.
Independent of �, the RX qubit states have the same
total spin and spin z-component such that they can di-
rectly be driven by electric fields [33] and be operated in
the absence of an applied external magnetic field. This
is in contrast to other spin qubit implementations, which
rely on engineered or intrinsic spin-orbit interaction [34–
39] for spin-charge coupling.

Four similar RX qubit tunnel coupling configurations
were used in this work as listed in Table I. We use two-
tone spectroscopy [31] to characterize the RX qubit dis-
persion: we apply a probe tone on resonance with the
coupling resonator, drive the qubit via the gate line and
tune its energy with �. The spectroscopic signal in
Fig. 1(e) agrees with the theoretically expected qubit dis-
persion for qubit configuration 3 (see Table I).
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coupling resonator. Then, we sweep � to cross a res-
onance between the RX qubit and the resonator, while
keeping the transmon far detuned. We observe a well
resolved avoided crossing in the |S11| reflectance spec-
trum shown in Fig. 2(a) and extract a spin qubit-
photon coupling strength of gRX/2⇡ = 52MHz from a
fit to the vacuum Rabi mode splitting shown in black in
Fig. 2(c). The spin qubit and the coupling resonator pho-
tons are strongly coupled since gRX > C, �2,RX , where
�2,RX/2⇡ = 11MHz is the RX qubit decoherence rate
and C/2⇡ = 4.6MHz is the bare coupling resonator
linewidth. The decoherence rate is determined inde-
pendently with power dependent two-tone spectrosopy.
We dispersively detune the coupling resonator with �C

from the RX qubit and extrapolate the width of the
peak observed in the two-one spectroscopy response [c.f.
Fig. 1(e)] to zero drive power [31].

Next, we characterize the interaction between the
transmon and the coupling resonator. We tune the trans-
mon through the resonator resonance by sweeping �T.
For this measurement the RX qubit is far detuned in
energy. We resolve the hybridized states of the trans-
mon and the resonator photons in the measured |S11|
spectrum in Fig. 2(b). They are separated in energy by
the vacuum Rabi mode splitting 2gT/2⇡ = 360MHz il-
lustrated in Fig. 2(c) in green. We perform power de-
pendent two-tone spectroscopy to extract the transmon
linewidth by probing the read-out resonator. We obtain
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the graphs indicate the energy levels of the RX qubit (⌫RX),
coupling resonator (⌫C) and transmon (⌫T). Theory curves in
the absence (presence) of coupling are shown as dashed black
(red) lines. (a) Reflected amplitude |S11| as a function of RX
detuning � and probe frequency ⌫p for RX qubit configura-
tion 2. (b) Reflected amplitude |S11| as a function of relative
transmon flux �T/�0 and ⌫p. The states |±i are discussed in
the main text. (c) Cuts from panel (a) at �/h ' �7.6GHz
(black) and from panel (b) at �T/�0 ' 0.3 (green) as marked
with arrows in the respective panels. The black trace is o↵set
in |S11| by 0.1. Theory fits are shown as red dashed lines. (d)
|S11| as a function of � and ⌫p for RX qubit configuration
2. The states |�,±i and |+,±i are explained in the main
text. (e) Theory result for parameters as in (d). Values for
|S11| are scaled to the experimental data range in (d). (f)
Cuts from panel (d) and from panel (e) (without scaling) at
�/h ' �9.8GHz and �/h ' �5.6GHz. The experimental
cuts are marked with black and blue arrows in (d), the theory
cuts are indicated with red arrows in (e). The blue trace is
o↵set in |S11| by 0.2.

�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/

p
2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and



A sqrt-of-iSWAP gate in circuit QED

of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-

native model is to use the cavity-modified Maxwell-Bloch
equations [25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but do not reproduce these numerical results when the drive
is close to the bare resonator frequency (Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.

VIII. RESONATOR AS QUANTUM BUS: ENTANGLEMENT

OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
#!1 cm$ and entangle them together, which is an essential

requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.
For the pair of qubits labeled i and j, both coupled with

strength g to the cavity and detuned from the resonator but in
resonance with each other, the transformation (11) yields the
effective two-qubit Hamiltonian [3,38,39]

H2q " &%'r + g2% #(i
z + ( j
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−( j

+$ . #32$

In addition to ac Stark and Lamb shifts, the last term couples
the qubits through virtual excitations of the resonator.
In a frame rotating at the qubit’s frequency ), H2q gen-

erates the evolution

U2q#t$ = exp%− ig2% t'a†a + 12(#(i
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where 1r is the identity operator in resonator space. Up to

FIG. 8. (Color online) Phase shift of the cavity field for the two
states of the qubit as a function of detuning between the driving and

resonator frequencies. Obtained from the steady-state solution of

the equation of motion for a#t$ while only taking into account
damping on the cavity and using the parameters of Table I. Readout

of the qubit is realized at, or close to, zero detuning between the

drive and resonator frequencies where the dependence of the phase

shift on the qubit state is largest. Coherent manipulations of the

qubit are realized close to the qubit frequency which is 10% de-

tuned from the cavity (not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s

state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-

diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-

quency. The qubit (red line) is first left to evolve freely for about
40 ns. The drive is turned on for t=7#% /2g$!115 ns, correspond-
ing to 7# pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number (black line) is small
even for the moderately large drive amplitude $=0.03 'r used here.
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• Setup: two qubits (i and j) interacting with the same oscillator

• Do the unitary transformation + expansion from the last slide
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FIG. 3. RX qubit working points and virtual photon-mediated interaction. (a) RX qubit decoherence rate �2,RX as a function of
detuning�. The dotted vertical lines specify the four working points used in (d)-(g). The corresponding colored data points were
obtained for a coupling resonator-RX qubit detuning of ⌫C�⌫RX ' (13.7, 8.0, 5.1, 4.4)gRX for �/h ' (�9.9,�3.3, 3.4, 10.2)GHz
and the RX qubit configurations 3 (circle) and 4 (triangle). For the black data points, ⌫C � ⌫RX � 9.7 gRX with qubit
configuration 1 (circle) and 2 (triangle). The dashed red line is a fit of a theory model (see main text) to the black data points.
Error bars indicate the standard error of fits and an estimated uncertainty of the RX qubit energy of 50MHz. (b) Ratio of
gRX, as obtained from theory, and �2,RX as shown in (a). The color and shape code of the data points is the same as in (a). (c)
Ground (|0ii) and excited states (|1ii) level alignment used in (d)-(g). (d)-(g) Two-tone spectroscopy at ⌫p = ⌫R ' 5.6GHz as
a function of � and drive frequency ⌫dRX. Dashed black (red) lines indicate transmon and RX qubit energies in the absence
(presence) of coupling. The frame color refers to the RX qubit working points as specified in (a). The inset in (e) shows the
result from theory with the same axes as the main graph. (h) Cuts from panels (d)-(g) at � as specified with arrows in the
corresponding panels. The cuts are centered around zero by accounting for a frequency o↵set ⌫dRX,0 ⌘ ⌫dRX � �⌫dRX. The
dashed lines show the corresponding theory results.

|+,±i, where the second label indicates a symmetric or
antisymmetric superposition of the RX qubit state with
the transmon-resonator |±i states. The splitting 2g⌥ be-
tween |�,±i and |+,±i is extracted from the Rabi cuts
in Fig. 2(f). We obtain 2g+/2⇡ = 84MHz at �/h '
�5.6GHz and 2g�/2⇡ = 63MHz at �/h ' �9.8GHz
from the fits in Fig. 2(f). The smaller g� compared to
g+ is due the decrease of the RX qubit dipole moment
with more negative �. The experimental observation in
Fig. 2(d) is well reproduced by a quantum master equa-
tion simulation shown in Fig. 2(e) and further discussed
in Ref. 27.

RX QUBIT OPTIMAL WORKING POINT

While �2,T is limited by Purcell decay and therefore
does not depend on �T, �2,RX changes with � [15].
For obtaining the data shown in Fig. 3(a) we use power
dependent two-tone spectroscopy via the coupling res-
onator to measure �2,RX as a function of �. We ob-
serve an increase of �2,RX as the charge character of the
qubit is increased with �. Compared to Ref. 15, the

data in Fig. 3(a) covers a larger range in �, in partic-
ular for |�| � tl,r. The data suggests a lower limit of
�2,RX/2⇡ ' 6.5MHz for � ⌧ 0. This is in agreement
with Refs. 42 and 15, where the RX qubit was operated
at a finite magnetic field of a few hundred mT. Hence, our
experiment indicates that the RX qubit can be operated
near zero magnetic field without reducing its optimal co-
herence. In our experiment, the maximum external mag-
netic field determined by �C is of the order of 1mT. To
model the RX qubit decoherence in Fig. 3(a), we consider
an ohmic spectral density for the charge noise as well as
the hyperfine field of the qubit host material that acts
on the spin part of the qubit (see Ref. 27 for details).
Theory and experiment in Fig. 3(a) match for a width
�B = 3.48mT of the hyperfine fluctuations in agreement
with other work on spin in GaAs [43–45]. This suggests
that �2,RX is limited by hyperfine interactions.

The colored data points in Fig. 3(a) were measured
for a smaller RX qubit-coupling resonator detuning com-
pared to the black data points (numbers are given in
Fig. 3 caption). The smaller detuning is used for the
virtual interaction measurements explained below. We
observe an increase of �2,RX for small qubit-resonator
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What is the spin qubit?
Coherent long-distance spin-qubit–transmon coupling
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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture

(1,1,1) charge configuration - 8 different spin states

Is this spin qubit better than the state-of-the art silicon single-electron spin qubits?
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2
IBM Research Zurich, CH-8803 Rüschlikon, Switzerland
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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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How coherent is the coupling?
Coherent long-distance spin-qubit–transmon coupling
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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
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at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
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cally far detuned. We plot the complex amplitude change
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⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
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point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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of asymmetric charge states and therefore a decrease in
the electric dipole coupling strength gRX. In contrast,
for � > 0 the RX qubit states have dominantly asym-
metric charge configurations (2, 0, 1) and (1, 0, 2). The
qubit therefore has a dominant charge character, which
increases, together with gRX, with increasing positive �.
Independent of �, the RX qubit states have the same
total spin and spin z-component such that they can di-
rectly be driven by electric fields [33] and be operated in
the absence of an applied external magnetic field. This
is in contrast to other spin qubit implementations, which
rely on engineered or intrinsic spin-orbit interaction [34–
39] for spin-charge coupling.

Four similar RX qubit tunnel coupling configurations
were used in this work as listed in Table I. We use two-
tone spectroscopy [31] to characterize the RX qubit dis-
persion: we apply a probe tone on resonance with the
coupling resonator, drive the qubit via the gate line and
tune its energy with �. The spectroscopic signal in
Fig. 1(e) agrees with the theoretically expected qubit dis-
persion for qubit configuration 3 (see Table I).

RESONANT INTERACTION

First, we investigate the resonant interaction between
the coupling resonator and the RX qubit. To start
with, both qubits are energetically detuned from the
coupling resonator. Then, we sweep � to cross a res-
onance between the RX qubit and the resonator, while
keeping the transmon far detuned. We observe a well
resolved avoided crossing in the |S11| reflectance spec-
trum shown in Fig. 2(a) and extract a spin qubit-
photon coupling strength of gRX/2⇡ = 52MHz from a
fit to the vacuum Rabi mode splitting shown in black in
Fig. 2(c). The spin qubit and the coupling resonator pho-
tons are strongly coupled since gRX > C, �2,RX , where
�2,RX/2⇡ = 11MHz is the RX qubit decoherence rate
and C/2⇡ = 4.6MHz is the bare coupling resonator
linewidth. The decoherence rate is determined inde-
pendently with power dependent two-tone spectrosopy.
We dispersively detune the coupling resonator with �C

from the RX qubit and extrapolate the width of the
peak observed in the two-one spectroscopy response [c.f.
Fig. 1(e)] to zero drive power [31].

Next, we characterize the interaction between the
transmon and the coupling resonator. We tune the trans-
mon through the resonator resonance by sweeping �T.
For this measurement the RX qubit is far detuned in
energy. We resolve the hybridized states of the trans-
mon and the resonator photons in the measured |S11|
spectrum in Fig. 2(b). They are separated in energy by
the vacuum Rabi mode splitting 2gT/2⇡ = 360MHz il-
lustrated in Fig. 2(c) in green. We perform power de-
pendent two-tone spectroscopy to extract the transmon
linewidth by probing the read-out resonator. We obtain
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FIG. 2. Resonant interaction. The schematics at the top of
the graphs indicate the energy levels of the RX qubit (⌫RX),
coupling resonator (⌫C) and transmon (⌫T). Theory curves in
the absence (presence) of coupling are shown as dashed black
(red) lines. (a) Reflected amplitude |S11| as a function of RX
detuning � and probe frequency ⌫p for RX qubit configura-
tion 2. (b) Reflected amplitude |S11| as a function of relative
transmon flux �T/�0 and ⌫p. The states |±i are discussed in
the main text. (c) Cuts from panel (a) at �/h ' �7.6GHz
(black) and from panel (b) at �T/�0 ' 0.3 (green) as marked
with arrows in the respective panels. The black trace is o↵set
in |S11| by 0.1. Theory fits are shown as red dashed lines. (d)
|S11| as a function of � and ⌫p for RX qubit configuration
2. The states |�,±i and |+,±i are explained in the main
text. (e) Theory result for parameters as in (d). Values for
|S11| are scaled to the experimental data range in (d). (f)
Cuts from panel (d) and from panel (e) (without scaling) at
�/h ' �9.8GHz and �/h ' �5.6GHz. The experimental
cuts are marked with black and blue arrows in (d), the theory
cuts are indicated with red arrows in (e). The blue trace is
o↵set in |S11| by 0.2.

�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/

p
2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and

3

of asymmetric charge states and therefore a decrease in
the electric dipole coupling strength gRX. In contrast,
for � > 0 the RX qubit states have dominantly asym-
metric charge configurations (2, 0, 1) and (1, 0, 2). The
qubit therefore has a dominant charge character, which
increases, together with gRX, with increasing positive �.
Independent of �, the RX qubit states have the same
total spin and spin z-component such that they can di-
rectly be driven by electric fields [33] and be operated in
the absence of an applied external magnetic field. This
is in contrast to other spin qubit implementations, which
rely on engineered or intrinsic spin-orbit interaction [34–
39] for spin-charge coupling.

Four similar RX qubit tunnel coupling configurations
were used in this work as listed in Table I. We use two-
tone spectroscopy [31] to characterize the RX qubit dis-
persion: we apply a probe tone on resonance with the
coupling resonator, drive the qubit via the gate line and
tune its energy with �. The spectroscopic signal in
Fig. 1(e) agrees with the theoretically expected qubit dis-
persion for qubit configuration 3 (see Table I).

RESONANT INTERACTION

First, we investigate the resonant interaction between
the coupling resonator and the RX qubit. To start
with, both qubits are energetically detuned from the
coupling resonator. Then, we sweep � to cross a res-
onance between the RX qubit and the resonator, while
keeping the transmon far detuned. We observe a well
resolved avoided crossing in the |S11| reflectance spec-
trum shown in Fig. 2(a) and extract a spin qubit-
photon coupling strength of gRX/2⇡ = 52MHz from a
fit to the vacuum Rabi mode splitting shown in black in
Fig. 2(c). The spin qubit and the coupling resonator pho-
tons are strongly coupled since gRX > C, �2,RX , where
�2,RX/2⇡ = 11MHz is the RX qubit decoherence rate
and C/2⇡ = 4.6MHz is the bare coupling resonator
linewidth. The decoherence rate is determined inde-
pendently with power dependent two-tone spectrosopy.
We dispersively detune the coupling resonator with �C

from the RX qubit and extrapolate the width of the
peak observed in the two-one spectroscopy response [c.f.
Fig. 1(e)] to zero drive power [31].

Next, we characterize the interaction between the
transmon and the coupling resonator. We tune the trans-
mon through the resonator resonance by sweeping �T.
For this measurement the RX qubit is far detuned in
energy. We resolve the hybridized states of the trans-
mon and the resonator photons in the measured |S11|
spectrum in Fig. 2(b). They are separated in energy by
the vacuum Rabi mode splitting 2gT/2⇡ = 360MHz il-
lustrated in Fig. 2(c) in green. We perform power de-
pendent two-tone spectroscopy to extract the transmon
linewidth by probing the read-out resonator. We obtain
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FIG. 2. Resonant interaction. The schematics at the top of
the graphs indicate the energy levels of the RX qubit (⌫RX),
coupling resonator (⌫C) and transmon (⌫T). Theory curves in
the absence (presence) of coupling are shown as dashed black
(red) lines. (a) Reflected amplitude |S11| as a function of RX
detuning � and probe frequency ⌫p for RX qubit configura-
tion 2. (b) Reflected amplitude |S11| as a function of relative
transmon flux �T/�0 and ⌫p. The states |±i are discussed in
the main text. (c) Cuts from panel (a) at �/h ' �7.6GHz
(black) and from panel (b) at �T/�0 ' 0.3 (green) as marked
with arrows in the respective panels. The black trace is o↵set
in |S11| by 0.1. Theory fits are shown as red dashed lines. (d)
|S11| as a function of � and ⌫p for RX qubit configuration
2. The states |�,±i and |+,±i are explained in the main
text. (e) Theory result for parameters as in (d). Values for
|S11| are scaled to the experimental data range in (d). (f)
Cuts from panel (d) and from panel (e) (without scaling) at
�/h ' �9.8GHz and �/h ' �5.6GHz. The experimental
cuts are marked with black and blue arrows in (d), the theory
cuts are indicated with red arrows in (e). The blue trace is
o↵set in |S11| by 0.2.

�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/

p
2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and
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of asymmetric charge states and therefore a decrease in
the electric dipole coupling strength gRX. In contrast,
for � > 0 the RX qubit states have dominantly asym-
metric charge configurations (2, 0, 1) and (1, 0, 2). The
qubit therefore has a dominant charge character, which
increases, together with gRX, with increasing positive �.
Independent of �, the RX qubit states have the same
total spin and spin z-component such that they can di-
rectly be driven by electric fields [33] and be operated in
the absence of an applied external magnetic field. This
is in contrast to other spin qubit implementations, which
rely on engineered or intrinsic spin-orbit interaction [34–
39] for spin-charge coupling.

Four similar RX qubit tunnel coupling configurations
were used in this work as listed in Table I. We use two-
tone spectroscopy [31] to characterize the RX qubit dis-
persion: we apply a probe tone on resonance with the
coupling resonator, drive the qubit via the gate line and
tune its energy with �. The spectroscopic signal in
Fig. 1(e) agrees with the theoretically expected qubit dis-
persion for qubit configuration 3 (see Table I).

RESONANT INTERACTION

First, we investigate the resonant interaction between
the coupling resonator and the RX qubit. To start
with, both qubits are energetically detuned from the
coupling resonator. Then, we sweep � to cross a res-
onance between the RX qubit and the resonator, while
keeping the transmon far detuned. We observe a well
resolved avoided crossing in the |S11| reflectance spec-
trum shown in Fig. 2(a) and extract a spin qubit-
photon coupling strength of gRX/2⇡ = 52MHz from a
fit to the vacuum Rabi mode splitting shown in black in
Fig. 2(c). The spin qubit and the coupling resonator pho-
tons are strongly coupled since gRX > C, �2,RX , where
�2,RX/2⇡ = 11MHz is the RX qubit decoherence rate
and C/2⇡ = 4.6MHz is the bare coupling resonator
linewidth. The decoherence rate is determined inde-
pendently with power dependent two-tone spectrosopy.
We dispersively detune the coupling resonator with �C

from the RX qubit and extrapolate the width of the
peak observed in the two-one spectroscopy response [c.f.
Fig. 1(e)] to zero drive power [31].

Next, we characterize the interaction between the
transmon and the coupling resonator. We tune the trans-
mon through the resonator resonance by sweeping �T.
For this measurement the RX qubit is far detuned in
energy. We resolve the hybridized states of the trans-
mon and the resonator photons in the measured |S11|
spectrum in Fig. 2(b). They are separated in energy by
the vacuum Rabi mode splitting 2gT/2⇡ = 360MHz il-
lustrated in Fig. 2(c) in green. We perform power de-
pendent two-tone spectroscopy to extract the transmon
linewidth by probing the read-out resonator. We obtain
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in |S11| by 0.1. Theory fits are shown as red dashed lines. (d)
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2. The states |�,±i and |+,±i are explained in the main
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�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/

p
2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and
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of asymmetric charge states and therefore a decrease in
the electric dipole coupling strength gRX. In contrast,
for � > 0 the RX qubit states have dominantly asym-
metric charge configurations (2, 0, 1) and (1, 0, 2). The
qubit therefore has a dominant charge character, which
increases, together with gRX, with increasing positive �.
Independent of �, the RX qubit states have the same
total spin and spin z-component such that they can di-
rectly be driven by electric fields [33] and be operated in
the absence of an applied external magnetic field. This
is in contrast to other spin qubit implementations, which
rely on engineered or intrinsic spin-orbit interaction [34–
39] for spin-charge coupling.

Four similar RX qubit tunnel coupling configurations
were used in this work as listed in Table I. We use two-
tone spectroscopy [31] to characterize the RX qubit dis-
persion: we apply a probe tone on resonance with the
coupling resonator, drive the qubit via the gate line and
tune its energy with �. The spectroscopic signal in
Fig. 1(e) agrees with the theoretically expected qubit dis-
persion for qubit configuration 3 (see Table I).

RESONANT INTERACTION

First, we investigate the resonant interaction between
the coupling resonator and the RX qubit. To start
with, both qubits are energetically detuned from the
coupling resonator. Then, we sweep � to cross a res-
onance between the RX qubit and the resonator, while
keeping the transmon far detuned. We observe a well
resolved avoided crossing in the |S11| reflectance spec-
trum shown in Fig. 2(a) and extract a spin qubit-
photon coupling strength of gRX/2⇡ = 52MHz from a
fit to the vacuum Rabi mode splitting shown in black in
Fig. 2(c). The spin qubit and the coupling resonator pho-
tons are strongly coupled since gRX > C, �2,RX , where
�2,RX/2⇡ = 11MHz is the RX qubit decoherence rate
and C/2⇡ = 4.6MHz is the bare coupling resonator
linewidth. The decoherence rate is determined inde-
pendently with power dependent two-tone spectrosopy.
We dispersively detune the coupling resonator with �C

from the RX qubit and extrapolate the width of the
peak observed in the two-one spectroscopy response [c.f.
Fig. 1(e)] to zero drive power [31].

Next, we characterize the interaction between the
transmon and the coupling resonator. We tune the trans-
mon through the resonator resonance by sweeping �T.
For this measurement the RX qubit is far detuned in
energy. We resolve the hybridized states of the trans-
mon and the resonator photons in the measured |S11|
spectrum in Fig. 2(b). They are separated in energy by
the vacuum Rabi mode splitting 2gT/2⇡ = 360MHz il-
lustrated in Fig. 2(c) in green. We perform power de-
pendent two-tone spectroscopy to extract the transmon
linewidth by probing the read-out resonator. We obtain
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FIG. 2. Resonant interaction. The schematics at the top of
the graphs indicate the energy levels of the RX qubit (⌫RX),
coupling resonator (⌫C) and transmon (⌫T). Theory curves in
the absence (presence) of coupling are shown as dashed black
(red) lines. (a) Reflected amplitude |S11| as a function of RX
detuning � and probe frequency ⌫p for RX qubit configura-
tion 2. (b) Reflected amplitude |S11| as a function of relative
transmon flux �T/�0 and ⌫p. The states |±i are discussed in
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�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/

p
2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and
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�2,T/2⇡ = 0.7MHz, which we estimate to be limited by
Purcell decay [40, 41]. Consequently, the strong coupling
limit gT > C, �2,T is also realized for transmon and cou-
pling resonator photons.
We now demonstrate that the two qubits interact co-

herently via resonant interaction with the coupling res-
onator. For this purpose, we first set the transmon and
the coupling resonator on resonance, where the hybrid
system forms the superposition states |±i = (|0T, 1Ci ±
|1T, 0Ci)/
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2 of a single excitation in either the resonator

or the qubit. Then, we sweep � to tune the RX qubit
through a resonance with both the lower energy state |�i
and the higher energy state |+i. In the |S11| spectrum in
Fig. 2(d), avoided crossings are visible at both resonance
points. This indicates the coherent interaction of the
three quantum systems that form the states |�,±i and
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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cally far detuned. We plot the complex amplitude change
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energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
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energy as obtained from theory.
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the average number of photons in both resonators is less
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is a drive at frequency ⌫d that is swept to probe the
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model and by including the position of higher excited
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sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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The sample (dashed line) contains four quantum systems with
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an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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FIG. 3. RX qubit working points and virtual photon-mediated interaction. (a) RX qubit decoherence rate �2,RX as a function of
detuning�. The dotted vertical lines specify the four working points used in (d)-(g). The corresponding colored data points were
obtained for a coupling resonator-RX qubit detuning of ⌫C�⌫RX ' (13.7, 8.0, 5.1, 4.4)gRX for �/h ' (�9.9,�3.3, 3.4, 10.2)GHz
and the RX qubit configurations 3 (circle) and 4 (triangle). For the black data points, ⌫C � ⌫RX � 9.7 gRX with qubit
configuration 1 (circle) and 2 (triangle). The dashed red line is a fit of a theory model (see main text) to the black data points.
Error bars indicate the standard error of fits and an estimated uncertainty of the RX qubit energy of 50MHz. (b) Ratio of
gRX, as obtained from theory, and �2,RX as shown in (a). The color and shape code of the data points is the same as in (a). (c)
Ground (|0ii) and excited states (|1ii) level alignment used in (d)-(g). (d)-(g) Two-tone spectroscopy at ⌫p = ⌫R ' 5.6GHz as
a function of � and drive frequency ⌫dRX. Dashed black (red) lines indicate transmon and RX qubit energies in the absence
(presence) of coupling. The frame color refers to the RX qubit working points as specified in (a). The inset in (e) shows the
result from theory with the same axes as the main graph. (h) Cuts from panels (d)-(g) at � as specified with arrows in the
corresponding panels. The cuts are centered around zero by accounting for a frequency o↵set ⌫dRX,0 ⌘ ⌫dRX � �⌫dRX. The
dashed lines show the corresponding theory results.

|+,±i, where the second label indicates a symmetric or
antisymmetric superposition of the RX qubit state with
the transmon-resonator |±i states. The splitting 2g⌥ be-
tween |�,±i and |+,±i is extracted from the Rabi cuts
in Fig. 2(f). We obtain 2g+/2⇡ = 84MHz at �/h '
�5.6GHz and 2g�/2⇡ = 63MHz at �/h ' �9.8GHz
from the fits in Fig. 2(f). The smaller g� compared to
g+ is due the decrease of the RX qubit dipole moment
with more negative �. The experimental observation in
Fig. 2(d) is well reproduced by a quantum master equa-
tion simulation shown in Fig. 2(e) and further discussed
in Ref. 27.

RX QUBIT OPTIMAL WORKING POINT

While �2,T is limited by Purcell decay and therefore
does not depend on �T, �2,RX changes with � [15].
For obtaining the data shown in Fig. 3(a) we use power
dependent two-tone spectroscopy via the coupling res-
onator to measure �2,RX as a function of �. We ob-
serve an increase of �2,RX as the charge character of the
qubit is increased with �. Compared to Ref. 15, the

data in Fig. 3(a) covers a larger range in �, in partic-
ular for |�| � tl,r. The data suggests a lower limit of
�2,RX/2⇡ ' 6.5MHz for � ⌧ 0. This is in agreement
with Refs. 42 and 15, where the RX qubit was operated
at a finite magnetic field of a few hundred mT. Hence, our
experiment indicates that the RX qubit can be operated
near zero magnetic field without reducing its optimal co-
herence. In our experiment, the maximum external mag-
netic field determined by �C is of the order of 1mT. To
model the RX qubit decoherence in Fig. 3(a), we consider
an ohmic spectral density for the charge noise as well as
the hyperfine field of the qubit host material that acts
on the spin part of the qubit (see Ref. 27 for details).
Theory and experiment in Fig. 3(a) match for a width
�B = 3.48mT of the hyperfine fluctuations in agreement
with other work on spin in GaAs [43–45]. This suggests
that �2,RX is limited by hyperfine interactions.

The colored data points in Fig. 3(a) were measured
for a smaller RX qubit-coupling resonator detuning com-
pared to the black data points (numbers are given in
Fig. 3 caption). The smaller detuning is used for the
virtual interaction measurements explained below. We
observe an increase of �2,RX for small qubit-resonator
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Spin qubits and superconducting qubits are among the promising candidates for a solid state
quantum computer. For the implementation of a hybrid architecture which can profit from the
advantages of either world, a coherent long-distance link is necessary that integrates and couples
both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance
SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple
quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting
qubits on the same chip. We find a working point for the spin qubit, where the ratio between its
coupling strength and decoherence rate is optimized. We observe coherent interaction between the
resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the
interaction is mediated either by real or virtual resonator photons.

INTRODUCTION

A future quantum processor will benefit from the ad-
vantages of di↵erent qubit implementations [1]. Two
prominent workhorses of solid state qubit implementa-
tions are spin- and superconducting qubits. While spin
qubits have a high anharmonicity, a small footprint [2]
and promise long coherence times [3–5], superconducting
qubits allow fast and high fidelity read-out and control
[6, 7]. To integrate both qubit systems on one scalable
quantum device, a coherent long-distance link between
the two is required. A technology to implement such
a link is circuit quantum electrodynamics (cQED) [8],
where microwave photons confined in a superconducting
resonator couple coherently to the qubits. cQED was
initially developed for superconducting qubits [9], where
long-distance coupling [10, 11] enables two-qubit gate op-
erations [12]. Recently, coherent qubit-photon coupling
was demonstrated for spin qubits [13–15] in few electron
quantum dots. However, coupling a spin qubit to another
distant qubit has not yet been shown. One major chal-
lenge for an interface between spin and superconducting
qubits is that spin qubits typically require large magnetic
fields [16, 17], to which superconductors are not resilient
[18].

We overcome this challenge by using a spin qubit that
relies on exchange interaction [19]. This resonant ex-
change (RX) qubit [20–24] is formed by three electrons
in a GaAs triple quantum dot (TQD). We implement the
qubit at zero magnetic field without reducing its coher-
ence compared to earlier measurements at finite magnetic
field [15]. The quantum link is realized with a frequency-
tunable high impedance SQUID array resonator [25],
that couples the RX and the superconducting qubit co-
herently over a distance of a few hundred micrometers.
The RX qubit coupling strength to the resonator and its
decoherence rate are tunable electrically. We find that
their ratio is comparable to previously reported values

for spin qubits in Si [13, 14]. We demonstrate coherent
coupling between the two qubits first by resonant and
then by virtual photons in the quantum link. Thereby we
electrostatically tune the RX qubit to di↵erent regimes,
where the qubit states have either a dominant spin or
charge character. We also report that the SQUID ar-
ray resonator can a↵ect the qubit performance, which we
suspect to be caused by charge noise introduced through
the resonator.

SAMPLE AND QUBIT CHARACTERIZATION

The design of our sample is illustrated schematically
in Fig. 1(a). It is similar to Ref. 26, where the focus was
on charge qubits. We use a superconducting qubit in
the standard transmon configuration [28, 29]. It consists
of an Al SQUID grounded on one side and connected in
parallel to a large shunt capacitor. We tune the transition
frequency ⌫T between the transmon ground |0Ti and first
excited state |1Ti by changing the flux �T through the
SQUID loop with an on-chip flux line.
The transmon and the RX qubit are capacitively cou-

pled to the same end of a SQUID array resonator, which
we denote as coupling resonator in the following, with
electric dipole coupling strengths gT and gRX. The other
end of the coupling resonator is connected to DC ground.
It is fabricated as an array of Al SQUID loops [25], which
enables us to tune its resonance frequency ⌫C within a
range of a few GHz with a magnetic flux �C produced by
a coil mounted close to the sample. In addition, the res-
onator has a high characteristic impedance that enhances
its coupling strength to both qubits. The transmon flux
�T has a negligible e↵ect on ⌫C.
The transmon is also capacitively coupled to a 50⌦ �/2

coplanar waveguide resonator with a coupling strength
gR/2⇡ ' 141MHz. Throughout this article, we refer to
this resonator as the read-out resonator, because it allows
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us to independently probe the transmon without popu-
lating the coupling resonator with photons. The read-out
resonator has a bare resonance frequency ⌫R = 5.62GHz
and a total photon decay rate R/2⇡ = 5.3MHz. As il-
lustrated in Fig. 1(a), coupling and read-out resonators
are measured in reflection mode by multiplexing a single
probe tone at frequency ⌫p. In addition, we can apply
a drive tone at frequency ⌫d to both qubits via the res-
onators. For the experiments presented in this work, the
probe tone power is kept su�ciently low to ensure that
the average number of photons in both resonators is less
than one.

In Fig. 1(b) we characterize the transmon with two-
tone spectroscopy. The first tone probes the read-out
resonator on resonance (⌫p = ⌫R), while the second tone
is a drive at frequency ⌫d that is swept to probe the
transmon resonance. Once ⌫d = ⌫T, the transmon is
driven to a mixed state, which is observed as a change in
the resonance frequency of the dispersively coupled read-
out resonator. This frequency shift is detected with a
standard heterodyne detection scheme [30] as a change
in the complex amplitude A = I + iQ of the signal re-
flected by the resonator. In Fig. 1(b) we observe a peak
in |A�A0| centered at ⌫d = ⌫T. Here, A0 is the complex
amplitude in the absence of the drive. From a fit of the
transmon dispersion to the multi-level Jaynes-Cummings
model and by including the position of higher excited
states of the transmon probed by two photon transitions
(not shown) [31, 32], we obtain the maximum Josephson
energy EJ,max = 18.09GHz and the transmon charging
energy Ec = 0.22GHz.

At a distance of approximately 200µm from the trans-
mon, we form a TQD by locally depleting a two-
dimensional electron gas in a GaAs/AlGaAs heterostruc-
ture with the Al top gate electrodes shown in Fig. 1(c).
One of the electrodes directly extends to the coupling res-
onator to enable electric dipole interaction between TQD
states and coupling resonator photons. Another elec-
trode allows us to apply RF signals at frequency ⌫dRX.
We use a QPC charge detector to help tune the TQD
to the three electron regime. The symmetric (1, 1, 1)
and the asymmetric (2, 0, 1) and (1, 0, 2) charge config-
urations are relevant for the RX qubit as they are lowest
in energy. We sweep combinations of voltages on the
TQD gate electrodes to set the energy of the asymmetric
configurations equal and control the energy detuning �
of the symmetric configuration with respect to the asym-
metric ones [see Fig. 1(d)]. There are two spin states
within (1, 1, 1) that have S = Sz = 1/2 equal to the
spin of two states with asymmetric charge configuration,
which form a singlet in the doubly occupied dot. An
equivalent set of states with S = 1/2, Sz = �1/2 ex-
ists. As the resonator response is identical for both sets
of states, considering only one is su�cient (see Ref. 27
for a detailed discussion). This results in a total of four
relevant states for the qubit [15]. The tunnel coupling tl
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FIG. 1. Sample and qubit dispersions. (a) Schematic of
sample and measurement scheme. The signals at frequencies
⌫p (probe) and ⌫d (drive) are routed with circulators as indi-
cated by arrows. The reflected signal I+iQ at ⌫p is measured.
The sample (dashed line) contains four quantum systems with
transition frequencies ⌫i: a coupling resonator that consists of
an array of SQUID loops (⌫C, blue), an RX qubit (⌫RX, red),
a transmon (⌫T, green) and a read-out resonator (⌫R, gray).
Empty black double-squares indicate electron tunnel barriers
separating the three quantum dots (red circles) as well as the
source (S) and drain (D) electron reservoirs. A drive tone
at frequency ⌫dRX can be applied to one of the dots. Filled
black squares denote the Josephson junctions of SQUIDs. Yel-
low circles with arrows mark coupling between the quantum
systems with coupling strengths gi. �C and �T denote cou-
pling resonator and transmon flux, respectively. (b) Two-tone
spectroscopy of the transmon, with the RX qubit energeti-
cally far detuned. We plot the complex amplitude change
|A � A0| (see main text) as a function of drive frequency
⌫d and �T /�0. The dashed line indicates the calculated ⌫T .
(c) Scanning electron micrograph of the TQD and quantum
point contact (QPC) region of the sample. Unused gate lines
are grayed out. The gate line extending to the coupling res-
onator is highlighted in blue. (d) TQD energy level diagram
indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
Two-tone spectroscopy of the RX qubit, with the transmon
energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
formation of the two RX qubit states |0RXi and |1RXi.
For � < 0, |0RXi and |1RXi have predominantly the
(1, 1, 1) charge configuration but di↵erent spin arrange-
ment. Consequently, quantum information is predomi-
nantly encoded into the spin degree of freedom. With in-
creasingly negative �, the spin character of the qubit in-
creases, which reduces the qubit dephasing due to charge
noise. This comes at the cost of a reduced admixture
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indicating the tunnel couplings tl and tr and the electrochem-
ical potentials, parametrized by �, of the relevant RX qubit
states (Nl,Nm,Nr) with Nl electrons in the left, Nm electrons
in the middle and Nr electrons in the right quantum dot. (e)
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energetically far detuned for ⌫p ' ⌫C = 4.84GHz as a func-
tion of � and ⌫dRX. The dashed line shows the expected qubit
energy as obtained from theory.

(tr) between the left (right) quantum dot and the middle
quantum dot hybridizes these states, which leads to the
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(1, 1, 1) charge configuration but di↵erent spin arrange-
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nantly encoded into the spin degree of freedom. With in-
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FIG. 1. Sample and simplified circuit diagram. (a) False-color optical micrograph of a representative device indicating the
substrate (dark gray), the superconducting structures (light gray), the gold top gates (yellow) forming the DQD and its source
and drain leads and contacts (blue). (b) Optical micrograph displaying a SQUID array resonator (light gray) and its coupling
gate to the DQD and the DQD biasing structures (yellow). (c) Electron micrograph of the DQD showing its electrostatic top
gates (yellow) and the plunger gate coupled to the resonator (orange). (d) Electron micrograph of three SQUID loops (dark
grey) in the array deposited on the etched GaAs heterostructure (light gray). (e) Circuit diagram schematically displaying
the DQD (source contact labeled S, drain contact labeled D, and coupling capacitance CPG to the resonator) and essential
components in the microwave detection chain (circulator, amplifier) used for performing reflectance measurements of the device.
Boxes with crosses and rectangles indicate Josephson and normal tunnel junctions, respectively.

We show that the resonance frequency of the SQUID
array resonator can be tuned from a maximum value of
⌫r ⇠ 6.0GHz to well below 4.5GHz (which is the lower
cut-o↵ frequency of our detection electronics) in measure-
ments of its reflectance |S11(⌫p)| as a function of applied
magnetic flux �m and probe frequency ⌫p (Fig. 2a). From
this data we extract the characteristic circuit parame-
ters of the resonator and find that its impedance changes
from Zr ⇠ 1.3 k⌦ to 1.8 k⌦ in this frequency range.
With the DQD well detuned from the resonator biased
at ⌫r = 5.02GHz, we determine its internal loss rate, its
external coupling rate to the input line and the total line
width (int,ext,)/(2⇡) ⇠ (10.0, 2.3, 12.3)MHz [29].

We configure the double quantum dot and determine
its characteristic properties by extracting the amplitude
and phase change of a coherent tone reflected o↵ the res-
onator at frequency ⌫p using a measurement of the reflec-
tion coe�cient S11(⌫p) in response to changes of the po-
tentials applied to the gate electrodes forming the double
quantum dot. Using this by now well-established tech-
nique [17–19], we record characteristic hexagonal charge
stability diagrams (Fig. 2b) from which we extract the
DQD charging energy of 580GHz and estimate the num-

ber of charges in each dot to be of the order of 10 electrons
[18, 30].
To explore their mutual coupling, we first fix the

SQUID array resonance frequency to ⌫r = 5.03GHz and
set the tunnel coupling of the DQD to 2t ⇠ 4.13GHz <
⌫r. This ensures that tuning the di↵erence energy �
between the charge states in the right and left quan-
tum dot results in a resonance (⌫q = ⌫r) between the
charge qubit transition frequency ⌫q and the resonator
at �± = ±

p
(⌫r(�m))2 � (2t)2 [31].

Varying the detuning � (along the dashed line indicated
in Fig. 2b) by applying appropriately chosen voltages to
the two side gates we observe the dispersive (i.e. non-
resonant) interaction between the DQD and the res-
onator in a probe-frequency-dependent reflectance mea-
surement of the resonator (Fig. 3a). As a function of
�, the reflectance spectrum |S11(⌫p)| shows characteristic
shifts in the dispersive regime (⌫q � ⌫r or ⌫q ⌧ ⌫r) and
indications of an avoided crossing at �± ⇠ ±2.86GHz
at resonance (⌫q = ⌫r) which we analyze in more detail
below.
We first extract the frequency ⌫̃r of the resonator, as

renormalized by its interaction with the DQD, by fitting a

Stockklauser et al., PRX 2017

High impedance: 
1.8 kOhm >> 50 Ohm

tunable with local magnetic flux: 
4.5 - 6.0 GHz



A sqrt-of-iSWAP gate in circuit QED

of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-

native model is to use the cavity-modified Maxwell-Bloch
equations [25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but do not reproduce these numerical results when the drive
is close to the bare resonator frequency (Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.

VIII. RESONATOR AS QUANTUM BUS: ENTANGLEMENT

OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
#!1 cm$ and entangle them together, which is an essential

requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.
For the pair of qubits labeled i and j, both coupled with

strength g to the cavity and detuned from the resonator but in
resonance with each other, the transformation (11) yields the
effective two-qubit Hamiltonian [3,38,39]
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In addition to ac Stark and Lamb shifts, the last term couples
the qubits through virtual excitations of the resonator.
In a frame rotating at the qubit’s frequency ), H2q gen-

erates the evolution
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FIG. 8. (Color online) Phase shift of the cavity field for the two
states of the qubit as a function of detuning between the driving and

resonator frequencies. Obtained from the steady-state solution of

the equation of motion for a#t$ while only taking into account
damping on the cavity and using the parameters of Table I. Readout

of the qubit is realized at, or close to, zero detuning between the

drive and resonator frequencies where the dependence of the phase

shift on the qubit state is largest. Coherent manipulations of the

qubit are realized close to the qubit frequency which is 10% de-

tuned from the cavity (not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s

state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-

diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-

quency. The qubit (red line) is first left to evolve freely for about
40 ns. The drive is turned on for t=7#% /2g$!115 ns, correspond-
ing to 7# pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number (black line) is small
even for the moderately large drive amplitude $=0.03 'r used here.

BLAIS et al. PHYSICAL REVIEW A 69, 062320 (2004)

062320-10

of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-

native model is to use the cavity-modified Maxwell-Bloch
equations [25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but do not reproduce these numerical results when the drive
is close to the bare resonator frequency (Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.

VIII. RESONATOR AS QUANTUM BUS: ENTANGLEMENT

OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
#!1 cm$ and entangle them together, which is an essential

requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.
For the pair of qubits labeled i and j, both coupled with

strength g to the cavity and detuned from the resonator but in
resonance with each other, the transformation (11) yields the
effective two-qubit Hamiltonian [3,38,39]

H2q " &%'r + g2% #(i
z + ( j

z$&a†a + 1
2
&%) + g2

%
&#(i

z + ( j
z$

+ &
g2

%
#(i
+( j

− + (i
−( j

+$ . #32$

In addition to ac Stark and Lamb shifts, the last term couples
the qubits through virtual excitations of the resonator.
In a frame rotating at the qubit’s frequency ), H2q gen-

erates the evolution

U2q#t$ = exp%− ig2% t'a†a + 12(#(i
z + ( j

z$&

*)
1

cos
g2

%
t i sin

g2

%
t

i sin
g2

%
t cos

g2

%
t

1

*! 1r, #33$

where 1r is the identity operator in resonator space. Up to

FIG. 8. (Color online) Phase shift of the cavity field for the two
states of the qubit as a function of detuning between the driving and

resonator frequencies. Obtained from the steady-state solution of

the equation of motion for a#t$ while only taking into account
damping on the cavity and using the parameters of Table I. Readout

of the qubit is realized at, or close to, zero detuning between the

drive and resonator frequencies where the dependence of the phase

shift on the qubit state is largest. Coherent manipulations of the

qubit are realized close to the qubit frequency which is 10% de-

tuned from the cavity (not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s

state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-

diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-

quency. The qubit (red line) is first left to evolve freely for about
40 ns. The drive is turned on for t=7#% /2g$!115 ns, correspond-
ing to 7# pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number (black line) is small
even for the moderately large drive amplitude $=0.03 'r used here.

BLAIS et al. PHYSICAL REVIEW A 69, 062320 (2004)

062320-10

4

do perturbation theory: (16)

E(2)
n

=
X

k 6=n

��hk(0)|V |n(0)i
��2

E(0)
n � E(0)

k

) E(2)
S(1,1) = �4t2

H

U
(17)

H 0
Hubbard ⇡

0

BB@

� 4t2
H

U
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA (18)

U 0(t) = e�i
H

0
Hubbard

~ t ) U(t) = W †U 0(t)W =

0

BB@

1 0 0 0
0 1

2 + 1
2e

i' 1
2 � 1

2e
i' 0

0 1
2 � 1

2e
i' 1

2 + 1
2e

i' 0
0 0 0 1

1

CCA (19)

' =
1

~

Z
t1

t0

dt
4t2

H

U

' = 3⇡
2

7. ‘strong coupling’ regime: �, ⌧ g

|gi =
 

0

1

!

|ei =
 

1

0

!

do perturbation theory: (20)

E(2)
n

=
X

k 6=n

��hk(0)|V |n(0)i
��2

E(0)
n � E(0)

k

) E(2)
g1 = �g2

�
(21)

Up to phase factors, this corresponds at t = ⇡�/4g2 to a
p
iSWAP operation.

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

4

do perturbation theory: (16)

E(2)
n

=
X

k 6=n

��hk(0)|V |n(0)i
��2

E(0)
n � E(0)

k

) E(2)
S(1,1) = �4t2

H

U
(17)

H 0
Hubbard ⇡

0

BB@

� 4t2
H

U
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA (18)

U 0(t) = e�i
H

0
Hubbard

~ t ) U(t) = W †U 0(t)W =

0

BB@

1 0 0 0
0 1

2 + 1
2e

i' 1
2 � 1

2e
i' 0

0 1
2 � 1

2e
i' 1

2 + 1
2e

i' 0
0 0 0 1

1

CCA (19)

' =
1

~

Z
t1

t0

dt
4t2

H

U

' = 3⇡
2

7. ‘strong coupling’ regime: �, ⌧ g

|gi =
 

0

1

!

|ei =
 

1

0

!

do perturbation theory: (20)

E(2)
n

=
X

k 6=n

��hk(0)|V |n(0)i
��2

E(0)
n � E(0)

k

) E(2)
g1 = �g2

�
(21)
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iSWAP operation.

Together with single-qubit gates, it forms a universal gate set.
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1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.



Turning the sqrt-of-iSWAP gate On and Off

of frequency are sufficient to realize any one-qubit logical
operation.
Assuming that we can take full advantage of lifetime en-

hancement inside the cavity (i.e., that !=!"), the number of
# rotations about the x axis which can be carried out is N#
=2$% /#g"!105$ for the experimental parameters assumed
in Table I. For large $, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.
Numerical simulation shown in Fig. 9 confirms this

simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

number n̄"$2 /%2!0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/" and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing %. If the drive is turned on faster than 1/%, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information (see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.
To model the effect of the drive on the resonator an alter-

native model is to use the cavity-modified Maxwell-Bloch
equations [25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but do not reproduce these numerical results when the drive
is close to the bare resonator frequency (Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.

VIII. RESONATOR AS QUANTUM BUS: ENTANGLEMENT

OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
#!1 cm$ and entangle them together, which is an essential

requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.
For the pair of qubits labeled i and j, both coupled with

strength g to the cavity and detuned from the resonator but in
resonance with each other, the transformation (11) yields the
effective two-qubit Hamiltonian [3,38,39]

H2q " &%'r + g2% #(i
z + ( j

z$&a†a + 1
2
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%
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z + ( j
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+ &
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+$ . #32$

In addition to ac Stark and Lamb shifts, the last term couples
the qubits through virtual excitations of the resonator.
In a frame rotating at the qubit’s frequency ), H2q gen-

erates the evolution

U2q#t$ = exp%− ig2% t'a†a + 12(#(i
z + ( j

z$&
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%
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%
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where 1r is the identity operator in resonator space. Up to

FIG. 8. (Color online) Phase shift of the cavity field for the two
states of the qubit as a function of detuning between the driving and

resonator frequencies. Obtained from the steady-state solution of

the equation of motion for a#t$ while only taking into account
damping on the cavity and using the parameters of Table I. Readout

of the qubit is realized at, or close to, zero detuning between the

drive and resonator frequencies where the dependence of the phase

shift on the qubit state is largest. Coherent manipulations of the

qubit are realized close to the qubit frequency which is 10% de-

tuned from the cavity (not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s

state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-

diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-

quency. The qubit (red line) is first left to evolve freely for about
40 ns. The drive is turned on for t=7#% /2g$!115 ns, correspond-
ing to 7# pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number (black line) is small
even for the moderately large drive amplitude $=0.03 'r used here.
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qubit-qubit interaction: always On

• the effect of the qubit-qubit interaction on dynamics is suppressed at `large 
qubit-qubit detuning’, that is, if:

2
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for concreteness: t,� > 0

coupling is much weaker than splitting: t ⌧ �

• the sqrt-of-iSWAP gate can be turned Off by detuning the two qubits from 
each other


