Coherent long-distance spin-qubit-transmon coupling

A. J. Landig,¹ J. V. Koski,¹ P. Scarlino,¹ C. Müller,² J. C. Abadillo-Uriel,³ B. Kratochwil,¹ C. Reichl,¹ W. Wegscheider,¹ S. N. Coppersmith,^{3, *} Mark Friesen,³ A. Wallraff,¹ T. Ihn,¹ and K. Ensslin¹

> ¹Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland ²IBM Research Zurich, CH-8803 Rüschlikon, Switzerland

³Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, United States

Spin qubits and superconducting qubits are among the promising candidates for a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either world, a coherent long-distance link is necessary that integrates and couples both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We find a working point for the spin qubit, where the ratio between its coupling strength and decoherence rate is optimized. We observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons.

Motivation: toward 2-qubit programmable quantum computer

- there are 5-qubit quantum computer prototypes with transmons
- spin qubits might have longer lifetime
- spin qubits are smaller than transmons
- this work (#1): warm-up for: spin-based quantum computer prototype • this work (#2): warm-up for: transmon processor, spin qubit memory

IBM Quantum Experience: 5 transmons

Q: in this experiment, does the spin qubit have longer lifetime than the transmon? A: No:

How far is this from a 2-qubit programmable quantum computer?

reflectometry on resonator

- spectroscopic evidence for qubit-resonator coupling
- single-shot readout of qubits
- single-qubit spectroscopy
- single-qubit gates
- state transfer between qubit and resonator
- spectroscopic evidence for qubit-resonator-qubit coupling
- two-qubit gate

Setup

Jaynes-Cummings Hamiltonian

Setup: qubit interacting with a harmonic oscillator

oscillator frequency
`resonator frequency')

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^{z} + \hbar \omega_{\rm r}^{z} + \hbar \omega_$$

oscillator = resonator = cavity = one mode of a microwave

qubit = e-charge, e-spin, superconducting qubi

'strong coupling' regime: $\gamma, \kappa \ll g$ many back-and-forth oscillations of an energy quantum be and oscillator are possible

Blais et al., Phys. Rev. A 69, 062320 (2004)

 $\hbar g(a^{\dagger}\sigma^{-} + \sigma^{+}a) + H_{\kappa} + H_{\gamma}.$

qubit-oscillator coupling streng

Typical parameter values in `cavity/circuit quantum electrodynamics'

Parameter	Symbol	3D optical	3D microwave	1D circuit
Resonance or transition frequency	$\omega_{ m r}/2\pi,\Omega/2\pi$	350 THz	51 GHz	10 GHz
Vacuum Rabi frequency	$g/\pi, g/\omega_{\rm r}$	220 MHz, 3×10^{-7}	47 kHz, 1×10^{-7}	100 MHz, 5×10^{-3}
Transition dipole	d/ea_0	~ 1	1×10^{3}	2×10^{4}
Cavity lifetime	$1/\kappa, Q$	10 ns, 3×10^{7}	1 ms, 3×10^{8}	$160 \text{ ns}, 10^4$
Atom lifetime	1 / y	61 ns	30 ms	$2 \mu s$
Atom transit time	t _{transit}	$\geq 50 \ \mu s$	100 µs	∞
Critical atom number	$N_0 = 2 \gamma \kappa / g^2$	6×10^{-3}	3×10^{-6}	$\leq 6 \times 10^{-5}$
Critical photon number	$m_0 = \gamma^2 / 2g^2$	3×10^{-4}	3×10^{-8}	$\leq 1 \times 10^{-6}$
Number of vacuum Rabi flops	$n_{\text{Rabi}} = 2g/(\kappa + \gamma)$	~10	~ 5	$\sim 10^{2}$

strong coupling achieved in circuit QED

we assume strong coupling from now on

Table I. from Blais et al., Phys. Rev. A 69, 062320 (2004)

`Dispersive qubit readout' in circuit QED

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + \sigma^+ a) + H_{\kappa} + H_{\gamma}.$$

qubit-oscillator detuning

`large detuning regime' or `disper

In the dispersive regime, the resonator acquires a qubit-state dependent shift of its eigenfrequency.

g:
$$\Delta \equiv \Omega - \omega_{\rm r}$$

rsive regime':
$$g/\Delta \ll 1$$

do perturbation theory:

$$E_n^{(2)} = \sum_{k \neq n} \frac{\left| \langle k^{(0)} | V | n^{(0)} \rangle \right|^2}{E_n^{(0)} - E_k^{(0)}} \Rightarrow E_{g1}^{(2)} = -\frac{g^2}{\Delta}$$

• Dispersive qubit readout' in circuit QED (if tranmission is measured)

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^{z} + \hbar g (a^{\dagger} \sigma^{-} + \sigma^{-})$$

In the dispersive regime, the qubit can be read out by probing the oscillator.

If reflection is measured (data from Gergő Fülöp)

(a) B_z-dependence, magnitude traces

Vacuum Rabi splitting: low (<1) photon number is important here

A sqrt-of-iSWAP gate in circuit QED

- Setup: two qubits (i and j) interacting with the same oscillator
- Do the unitary transformation + expansion from the last slide

$$H_{2q} \approx \hbar \left[\frac{g^2}{\omega_r} + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_i^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_i^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_i^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_i^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_i^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{\pi \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z) + \frac{\hbar \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z)}{(\sigma_j^z + \sigma_j^z)} \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{\pi \frac{g^2}{\Delta} (\sigma_j^z + \sigma_j^z) + \frac{\pi \frac{g^2}{\Delta} (\sigma$$

(32)

Coherent long-distance spin-qubit-transmon coupling What is the spin qubit?

(1,1,1) charge configuration - 8 different spin states

Is this spin qubit better than the state-of-the art silicon single-electron spin qubits?

Coherent long-distance spin-qubit-transmon coupling How is the coupling achieved?

Coherent long-distance spin-qubit–transmon coupling How coherent is the coupling?

Coherent long-distance spin-qubit-transmon coupling How long is the distance?

How does the SQUID array resonator work?

High impedance: 1.8 kOhm >> 50 Ohm

tunable with local magnetic flux: 4.5 - 6.0 GHz

(d)

Stockklauser et al., PRX 2017

A sqrt-of-iSWAP gate in circuit QED

$$H_{2q} \approx \hbar \left[\omega_{\rm r} + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} \right] (\sigma_i^z + \sigma_j^z) + \hbar \frac{g^2}{\Delta} (\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+).$$
(32)

In a frame rotating at the qubit's frequency Ω , H_{2q} generates the evolution

Together with single-qubit gates, it forms a universal gate set.

$$\frac{2}{\Delta} t \left(a^{\dagger} a + \frac{1}{2} \right) (\sigma_i^z + \sigma_j^z) \right]$$

$$\cos \frac{g^2}{\Delta} t \quad i \sin \frac{g^2}{\Delta} t$$

$$\sin \frac{g^2}{\Delta} t \quad \cos \frac{g^2}{\Delta} t$$

$$1 \right) \otimes \mathbb{I}_r, \quad (33)$$

Up to phase factors, this corresponds at $t = \pi \Delta/4g^2$ to a $\sqrt{i\text{SWAP}}$ operation.

Turning the sqrt-of-iSWAP gate On and Off

$$H_{2q} \approx \hbar \left[\omega_{\rm r} + \frac{g^2}{\Delta} (\sigma_i^z + \sigma_j^z) \right] a^{\dagger} a + \frac{1}{2} \hbar \left[\Omega + \frac{g^2}{\Delta} \right] (\sigma_i^z + \sigma_j^z) + \hbar \frac{g^2}{\Delta} (\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+).$$
(32)
qubit-qubit interaction: always On

 the effect of the qubit-qubit intera qubit-qubit detuning', that is, if:

 the sqrt-of-iSWAP gate can be tui each other

• the effect of the qubit-qubit interaction on dynamics is suppressed at `large

$$g^2/\Delta \ll |\Omega_i - \Omega_j|$$

• the sqrt-of-iSWAP gate can be turned Off by detuning the two qubits from